首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
提出一种用神经网络设计提前一天的短期负荷预测系统的方法.在对神经网络进行训练前,先通过一种简单的方法对数据进行了预处理,以使设计的系统具有处理由于突发事件等因素引起负荷突然变化的能力.用山东省电网2003年的负荷数据进行试验,试验结果表明方法的适用性.  相似文献   

2.
科学合理的数据处理是提高短期电力负荷预测精度的最基本环节之一.利用软件滤波方法,自动平滑坏负荷数据;同时根据负荷的不同特性和规律,将输入数据进行有效分组,分别建立分组负荷预测模型:工作日负荷预测模型、周日负荷预测模型以及节日负荷预测模型,使预测模型不但具有所需样本数据少、模型简单、精度高等优点,同时又具有较强的泛化能力,从而提高负荷预测的效率和精度.通过对南昌供电公司的负荷数据进行具体计算,表明该方法是有效和可行的.  相似文献   

3.
基于模式识别和神经网络的电力系统短期负荷预测   总被引:6,自引:3,他引:3  
当制定发电机组的启停计划和负荷管理计划时,对未来24h内的短期负荷预测是很必要的,精确的负荷预报能大大提高电力系统管理水平.本文介绍一种基于模式识别理论构造的人工神经网络,应用于电力系统短期负荷预测的方法.  相似文献   

4.
设计了一个三层神经网络模型来实现电力系统的短期负荷预预.采用了改进的BP学习算法,以提高训练的收敛速度.预测仿真结果表明,所设计的神经网络是可以进行短期负荷预测的.  相似文献   

5.
通过对超短期负荷预测理论的分析和研究,提出了基于超短期负荷预测技术电压无功控制策略.此控制策略以预测的电压、无功变化趋势作为电压控制的重要参考量,减小了有载调压变压器分接头调整次数,消除了投切震荡现象,提高了调整及投切的一次设备的使用寿命.  相似文献   

6.
针对短期负荷预测问题,提出了一种遗传算法-径向基函数(GA-RBF)神经网络负荷预测方法,解决传统径向基函数(RBF)神经网络预测中难以确定最佳隐藏层数问题,以提高预测的准确性。首先分析了GA算法模型和RBF神经网络模型;然后利用GA算法与RBF模型结合得到GA-RBF负荷预测模型;最后利用仿真工具对所建模型进行训练和预测。结果表明,与传统方法相比,其平均绝对百分误差值降低了4. 7%,证明了该方法的精确性和有效性。  相似文献   

7.
基于遗传算法和BP神经网络的短期电力负荷预测   总被引:1,自引:0,他引:1  
根据电力负荷的主要影响因素,考虑时间和天气,建立了基于遗传算法和反向传播神经网络(BP)的短期负荷预测.从BP神经网络的理论入手,采用遗传算法优化BP神经网络的初始权值和隐层节点数,从而避免了神经网络结构确定和初始权值选择的盲目性,提高了神经网络用于电力系统短期负荷预测的效率和精度使得负荷预测在更加合理的网络结构上进行.  相似文献   

8.
本文提出了一种新的电压无功综合控制策略即在传统"九区图"控制策略的基础上再引入短期负荷预测作为辅助控制策略,算例仿真结果表明,该综合控制策略在保证电压合格,无功基本平衡的基础上,能减少变压器的调节次数,避免了投切振荡现象,延长了开关使用寿命。  相似文献   

9.
短期负荷预测主要用于预测未来几小时、1天甚至几天的负荷,对电力系统运行的安全性和经济性具有重要意义。时间序列模型在电力系统短期负荷预测中得到了广泛应用。然而,这种方法的一个主要缺点是无法将影响负荷预测的主要因素之一即气象因素考虑进去。在此背景下,首先基于历史负荷数据,采用传统的分解方法提取出负荷中的周期分量,得到剔除周期分量后的非周期分量。在此基础上,首先采用逐步回归法筛选出影响负荷非周期分量的主要因素,之后发展了预测负荷非周期分量的传递函数模型。最后,用广东电力系统实际负荷数据对所发展的短期负荷预测模型的准确性进行了验证。  相似文献   

10.
提出将Kohonen网络、Elman神经网络和遗传算法结合起来建立一种智能组合预测模型,此模型能够综合各种单一预测模型的优点,内在结构随时间的推移不断变化,符合电力负荷的特点,提高了负荷预测的精度.文中给出了三种网络模型进行短期电力负荷预测的仿真结果比较,从而验证了智能组合预测模型的合理性和良好的应用前景.  相似文献   

11.
电力系统负荷预测的精度将直接影响电力系统的经济效益和用电的安全和稳定,短期电力负荷预测的重要组成部分.利用人工神经网络可以任意逼近非线性系统的特性,将其用于短期负荷预测.该文研究了在改进的BP网络中加入了动量项和构建输入网络时结合了同类型日思想的模糊映射,预测结果表明比标准BP算法具有更好的性能.同时,针对大量无法用精...  相似文献   

12.
提出了一种改进的BP神经网络学习算法,并将其应用于短期电力负荷预测中,通过采用基于响应函数输出限幅和自适应调整学习率等措施,来提高神经网络本身的效率和精度,仿真结果验证了改进措施的有效性,取得了满意的预测结果.  相似文献   

13.
遗传算法的基础上对其局限性进行改进,使该算法在电力系统无功优化的应用中具有一定优越性。通过改进编码和选择算子,自适应的交叉变异概率等策略,并引入基于模拟退火策略的适应度函数和混沌算法,使得改进遗传算法高速、准确的收敛于最优解,改善了传统遗传算法易陷入收敛性差、效率低的弊端。在此基础上建立无功优化数学模型,介绍了该算法具体实现步骤,并将其应用于IEEE30节点,证明所提算法是可行和有效的。  相似文献   

14.
针对传统无功优化的目标单一性,建立了以有功网络损耗和节点电压偏差均最小为目标的无功优化模型,采用模糊数学将不同量纲目标进行归一化,并转化为单目标模糊规划模型.鉴于多目标无功优化模型的复杂性,以及连续、离散控制变量并存,采用遗传算法搜索全局最优解.对某21节点系统进行了多目标无功优化分析,验证了该模型的可行性和优越性.  相似文献   

15.
无功优化是通过无功的优化配置提高电压质量和获得经济效益。本文以大量的文献为基础 ,对无功优化的各种方法进行了总结 ,指出人工智能方法有很好的发展前途  相似文献   

16.
电力系统负荷预测是指从电力负荷自身的变化情况以及经济、气象等因素的影响规律出发,通过对历史数据的分析和研究,探索事物之间的内在联系和发展变化规律,以未来的经济、气象等因素的发展趋势为依据,对电力需求作出预先的估计和推测。本文通过使用经典的时间序列法进行短期负荷预测,以C++语言程序为计算手段,并将预测结果与实际值进行比较分析。同时类比其他各种预测的方法,对短期负荷预测的方法、过程、意义进行一些分析。  相似文献   

17.
基于粒子群优化灰色模型的电力系统负荷预测   总被引:1,自引:0,他引:1  
在分析灰色GM(1,1)模型局限性的基础上,应用粒子群优化算法的非线性全局寻优能力来求解灰色模型参数值,提出了基于粒子群优化算法的灰色模型,并给出了负荷预测的实例.预测结果表明基于粒子群优化算法的灰色模型具有较高的预测精度和较广泛的应用范围.  相似文献   

18.
较为全面的研究了国内外学术界对配电网无功动态优化调度问题的研究状况;概括了动态无功优化与静态无功优化的具体区别;通过对动态无功优化模型求解算法的分析,总结了该项目研究的四种典型算法,即动态规划法、非线性混合整数优化法、其他数学计算方法和人工智能算法;通过综合比对,发现第三种计算方法数学模型清晰简单,有利于对配电网动态无功优化算法的进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号