首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potentiostatic electrodeposition of n-type Bi2Te3−ySey thermoelectric films onto stainless steel and gold substrates from nitric acid aqueous solutions has been carried out at room temperature. The cathodic process during the electrodeposition of Bi2Te3−ySey films was investigated by cyclic voltammetric experiments. The structure and surface morphology of Bi2Te3−ySey films deposited on both substrates were characterized by X-ray diffraction (XRD) and environment scanning electron microscopy (ESEM) coupled with energy dispersive spectroscopy (EDS). Electrical and thermoelectric properties of as-deposited films were also measured at room temperature. The results show that the reduction process under the same depositing conditions on gold and stainless steel substrates is very different. On gold substrates, H2SeO3 in the electrolyte is firstly reduced to elemental Se, and then the deposited Se reacts with HTeO2+ and Bi3+ to form Bi2Te3−ySey alloy. On stainless steel substrates, HTeO2+ in the electrolyte is firstly replaced by elemental Fe to produce elemental Te, and subsequently the generated Te reacts with H2SeO3 and Bi3+ to form Bi2Te3−ySey alloy. Analysis of ESEM show that the surface morphology of the films electrodeposited on gold substrates is more compact than that on stainless steel substrates. The XRD patterns indicate that the films electrodeposited on both substrates exhibit preferential orientation along (1 1 0) plane, but the relative peak intensity of (0 1 5) and (2 0 5) planes on stainless steel substrates is stronger than that on gold substrates. The Seebeck coefficient and electrical resistivity of the films deposited on stainless steel substrates are higher than that on gold substrates.  相似文献   

2.
The (In15Sb85)100−xBix films (x = 0–18.3) were deposited on nature oxidized Si wafer and glass substrate at room temperature by magnetron co-sputtering of Sb target and InBi composite target. The optical and thermal properties of the films were examined by reflectivity thermal analyzer. Microstructures of the films were analyzed by X-ray diffraction and transmission electron microscope. The crystallization activation energy of the (In15Sb85)100−xBix film (x = 0–18.3) was decreased with increasing Bi content, this indicated that the crystallization speed was improved by doping Bi. The structure of as-deposited (In15Sb85)100−xBix films was amorphous and it would transform to Sb, InSb, Bi, and BiIn2 coexisting phases after annealing at 250 °C for 30 min.  相似文献   

3.
CuIn1 − xAlxSe2 (CIAS) thin films (x = 0.06, 0.18, 0.39, 0.64, 0.80 and 1) with thicknesses of approximately 1 μm were formed by the selenization of sputtered Cu―In―Al precursors and studied via X-ray diffraction, inductively coupled plasma mass spectrometry and micro-Raman spectroscopy at room temperature. Precursor films selenized at 300, 350, 400, 450, 500 and 550 °C were examined via Raman spectroscopy in the range 50-500 cm− 1 with resolution of 0.3 cm− 1. Sequential formation of InxSey, Cu2 − xSe, CuInSe2 (CIS) and CIAS phases was observed as the selenization temperature was increased. Conversion of CIS to CIAS was initiated at 500 °C. For all CuIn1 − xAlxSe2 products, the A1 phonon frequency varied nonlinearly with respect to the aluminum composition parameter x in the range 172 cm− 1 to 186 cm− 1.  相似文献   

4.
n-type SbI3-doped 95%Bi2Te3+5%Bi2Se3 compounds were prepared by a rapid solidification and extrusion at the temperature range 420-480 °C using an extrusion ratio of 25:1. The microstructure and thermoelectric properties of the compounds were investigated as a function of extrusion temperature. The fabricated powder consists of homogeneous Bi2Te3+Bi2Se3 solid solution and the relative density of over 99% was obtained by hot extrusion. The values of Seebeck coefficient for the compounds hot extruded at 420, 450, and 480 °C were −160.8, −170.2, and −165.7 μV K−1, respectively. The values of electrical resistivity (ρ) for the compounds hot extruded at 420, 450, and 480 °C were 0.49, 0.57, and 0.51×10−5 Ω m, respectively. The maximum power factor value of the compounds hot extruded at 480 °C was 53.8×106 μW cm−1 K−2.  相似文献   

5.
The optimization of the deposition process of n-type Bismuth Telluride and p-type Antimony Telluride thin films for thermoelectric applications is reported. The films were deposited on a 25 μm-thick flexible polyimide (kapton) substrate by co-evaporation of Bi and Te, for the n-type element, and Sb and Te, for the p-type element. The evaporation rate of each material was monitorized by an oscillating crystal sensor and the power supplied to each evaporation boat was controlled with a PID algorithm in order to achieve a precise user-defined constant evaporation rate.The influence of substrate temperature (in the range 240-300 °C) and evaporation rates of Bi, Te and Sb on the electronic properties of the films was studied and optimized to obtain the highest Seebeck coefficient. The best n-type Bi2Te3 films were deposited at 300 °C with a polycrystalline structure, a composition close to stoichiometry, electrical resistivity ∼20 μΩ m and Seebeck coefficient −195 μV/°C. The best p-type Sb2Te3 films were deposited at 240 °C, are slightly Te-rich, have electrical resistivity ∼20 μΩ m and Seebeck coefficient +153 μV/°C. These high Seebeck coefficients and low electrical resistivities make these materials suitable for fabrication of Peltier coolers and thermopile devices.  相似文献   

6.
Bi2VO5.5 ferroelectric thin films were fabricated on LaNiO3/Si(100) substrate via chemical solution deposition. Ferroelectric and dielectric properties of the thin films annealed at 500-700 °C were studied. The thin film annealed at 700 °C exhibited more favorable ferroelectric and dielectric properties than those annealed at lower temperatures. The values of remnant polarization 2Pr and coercive field Ec for the film annealed at 700 °C are 10.62 µC/cm2 and 106.3 kV/cm, respectively. The leakage current of the film is about 1.92 × 10− 8 A/cm2 at 6 V. The possible mechanism of the dependence of electrical properties of the films on the annealing temperature was discussed.  相似文献   

7.
Anatase titanium dioxide (TiO2) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO2 pellets as the source material. Highly transparent TiO2 thin films prepared at substrate temperatures from room temperature to 400 °C exhibited photocatalytic activity, regardless whether oxygen (O2) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO2 thin films prepared at 300 °C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO2 thin film with a resistivity of 2.6 × 10− 1 Ω cm was prepared at a substrate temperature of 400 °C without the introduction of O2 gas.  相似文献   

8.
Cu2SnSe3 thin films were prepared by single-step D.C. sputtering at 100-400 °C for 3 h using targets composed of Cu2Se and SnSe2 in three different ratios of 2/1 (target A), 1.8/1 (target B), and 1.6/1 (target C). The advantages of self-synthesized SnSe2 instead of commercially available SnSe for depositing Cu2SnSe3 thin films were demonstrated. Effects of target composition and substrate temperature on the properties of Cu2SnSe3 thin films were investigated. Structure, surface morphology, composition, electrical and optical properties at different process conditions were measured. The 400 °C-sputtered films obtained from target B display with direct band gap of 0.76 eV, electrical resistivity of 0.12 Ω cm, absorption coefficient of 104-105 cm− 1, carrier concentration of ∼ 1.8 × 1019 cm− 3, and electrical mobility of 2.9 cm2/V s.  相似文献   

9.
The optimization of the thermal co-evaporation deposition process for n-type bismuth telluride (Bi2Te3) thin films deposited onto polyimide substrates and intended for thermoelectric applications is reported. The influence of deposition parameters (evaporation rate and substrate temperature) on film composition and thermoelectric properties was studied for optimal thermoelectric performance. Energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy confirmed the formation of Bi2Te3 thin films. Seebeck coefficient (up to 250 μV K− 1), in-plane electrical resistivity (≈10 μΩ m), carrier concentration (3×1019-20×1019 cm− 3) and Hall mobility (80-170 cm2 V1 s− 1) were measured at room temperature for selected Bi2Te3 samples.  相似文献   

10.
Growth conditions suitable for sputter-epitaxy of Bim + 1Fem-3Ti3O3m + 3 (BFTO) thin films with layered structure have been investigated. The amount of oxygen during deposition was found to be specifically essential for obtaining a good-quality thin film of BFTO with a large m. The (001) epitaxial thin films of BFTO with m of nearly 10 which is expected to retain magnetic order up to room temperature have been successfully grown on (001) SrTiO3 substrates under the determined optimum condition. The film exhibited leakage current as low as order of 10−2-10−1 A/m2 limited by Schottky emission at the interfaces between the electrodes and the film. In addition, the film showed a ferroelectric polarization curve with Pr = 6 μC/cm2 for applied field of 35 MV/m at room temperature though the curve was unsaturated. These indicate that the BFTO (m = 10) thin films are promising as multiferroics at room temperature.  相似文献   

11.
(La0.05Bi0.95)2Ti2O7 (LBTO) thin films had been successfully prepared on P-type Si substrate by chemical solution deposition method. The structural properties of the films were studied by X-ray diffraction. The phase of (La0.05Bi0.95)2Ti2O7 is more stable than the phase of Bi2Ti2O7 without La substitution. The films exhibited good insulating properties with room temperature resistivities in the range of 1012-1013 Ω cm. The dielectric constant of the film annealed at 550 °C at 100 kHz was 157 and the dissipation factor was 0.076. The LBTO thin films can be used as storage capacitors in DRAM.  相似文献   

12.
Anatase titanium dioxide (TiO2) thin films are prepared by DC reactive magnetron sputtering using Ti target as the source material. In this work argon and oxygen are used as sputtering and reactive gas respectively. DC power is used at 100 W per 1 h. The distance between the target and substrate is fixed at 4 cm. The glass substrate temperature value varies from room temperature to 400 °C. The crystalline structure of the films is determined by X-ray diffraction analysis. All the films deposited at temperatures lower than 300 °C were amorphous, whereas films obtained at higher temperature grew in crystalline anatase phase. Phase transition from amorphous to anatase is observed at 400 °C annealing temperature. Transmittances of the TiO2 thin films were measured using UV-visible NIR spectrophotometer. The direct and indirect optical band gap for room temperature and substrate temperature at 400 °C is found to be 3.50, 3.41 eV and 3.50, 3.54 eV respectively. The transmittance of TiO2 thin films is noted higher than 75%. A comparison among all the films obtained at room temperature showed a transmittance value higher for films obtained at substrate temperature of 400 °C. The morphology of the films and the identification of the surface chemical stoichiometry of the deposited film at 400 °C were studied respectively, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The surface roughness and the grain size are measured using AFM.  相似文献   

13.
Bulk samples of Se85 − xTe15Bix (where x = 0, 1, 2, 3, 4, 5) glassy alloys are obtained by melt quenching technique. Differential scanning calorimetric (DSC) technique has been applied to determine the thermal properties of Se-rich Se85 − xTe15Bix glassy alloys in the glass transition and crystallization regions at four heating rates (5, 10, 15, 20 K min− 1). The glass transition temperature (Tg) and peak crystallization temperature(Tp) are found to shift to a higher temperature with increasing heating rate. With Bi addition, the value of (Tg)increases. (Tp) is found to increase as Bi is introduced to the Se-Te host, however further increase in Bi concentration is responsible for the reduction of. Thin film of bulk samples are deposited on glass substrate using thermal evaporation technique under vacuum for optical characterization. Optical band gap is estimated using Tauc's extrapolation and is found to decrease from 1.46 to 1.24 eV with the Bi addition.  相似文献   

14.
N-type bismuth telluride (Bi2Te3) thermoelectric thin films were deposited on BK7 glass substrates by ion beam sputtering method. Various substrate temperatures were tried to obtain optimal thermoelectric performance. The influence of deposition temperature on microstructure, surface morphology and thermoelectric properties was investigated. X-ray diffraction shows that the films are rhombohedral with c-axis as the preferred crystal orientation when the deposition temperature is above 250 °C. All the films with single Bi2Te3 phase are obtained by comparing X-ray diffraction and Raman spectroscopy. Scanning electron microscopy result reveals that the average grain size of the film is larger than 500 nm when the deposition temperature is above 300 °C. Thermoelectric properties including Seebeck coefficient and electrical conductivities were measured at room temperature, respectively. It is found that Seebeck coefficients increase from − 28 μV k− 1 to − 146 μV k− 1 and the electrical conductivities increase from 1.87 × 103 S cm− 1 to 3.94 × 103 S cm− 1 when the deposition temperature rose to 250 °C and 300 °C, respectively. An optimal power factor of 6.45 × 10− 3 Wm− 1 K− 2 is gained when the deposition temperature is 300 °C. The thermoelectric properties of bismuth telluride thin films have been found to be strongly enhanced by increasing the deposition temperature.  相似文献   

15.
Thin films of Bi3.15Nd0.85Ti3O12 (BNT) and Bi3.15Nd0.85Ti3 − xZrxO12 (BNTZx, x = 0.1 and 0.2) were fabricated on Pt/TiO2/SiO2/Si(100) substrates by a chemical solution deposition (CSD) technique at 700 °C. Structures, surface morphologies, leakage current characteristics and Curie temperature of the films were studied as a function of Zr ion content by X-ray diffraction, atomic force microscopy, ferroelectric test system and thermal analysis, respectively. Experimental results indicate that Zr ion substitution in the BNT film markedly decreases the leakage current of the film, while almost not changing the Curie temperature of the film, which is at about 420-460 °C. The decrease of the leakage current in BNTZx films is that the conduction by the electron hopping between Ti4+ and Ti3+ ions is depressed because Zr4+ ions can block the path between two adjacent Ti ions and enlarge hopping distance.  相似文献   

16.
Jin Won Kim 《Thin solid films》2010,518(22):6514-6517
V-doped K0.5Bi4.5Ti4O15 (K0.5Bi4.5  x/3Ti4  xVxO15, KBTiV-x, x = 0.00, 0.01, 0.03, and 0.05) thin films were prepared on a Pt(111)/Ti/SiO2/Si(100) substrate by a chemical solution deposition method. The thin films were annealed by using a rapid thermal annealing process at 750 °C for 3 min in an oxygen atmosphere. Among them, KBTiV-0.03 thin film exhibited the most outstanding electrical properties. The value of remnant polarization (2Pr) was 75 μC/cm2 at an applied electric field of 366 kV/cm. The leakage current density of the thin film capacitor was 5.01 × 108 at 100 kV/cm, which is approximately one order of magnitude lower than that of pure K0.5Bi4.5Ti4O15 thin film capacitor. We found that V doping is an effective method for improving the ferroelectric properties of K0.5Bi4.5Ti4O15 thin film.  相似文献   

17.
Humidity response of Radio Frequency sputtered MgFe2O4 thin films onto alumina substrate, annealed at 400 °C, 600 °C and 800 °C has been investigated. Crystalline phase formation of thin films annealed at different temperature was analyzed by X-ray Diffraction. A particle/grain like microstructure in the grown thin films was observed by Scanning Electron Microscope and Atomic Force Microscope images. Film thickness for different samples was measured in the range 820-830 nm by stylus profiler. Log R (Ω) response measurement was taken for all thin films for 10-90% relative humidity (% RH) change at 25 °C. Resistance of the film increased from 5.9 × 1010 to 3 × 1012 at 10% RH with increase in annealing temperature from 400 °C to 800 °C. A three-order magnitude, 1012 Ω to 109 Ω drop in resistance was observed for the change of 10 to 90% RH for 800 °C annealed thin film. A good linear humidity response, negligible humidity hysteresis and minimum response/recovery time of 4 s/6 s have been measured for 800 °C annealed thin film.  相似文献   

18.
Application of the Sb-doping method to low-temperature (≤ 400 °C) processing of CuIn1 − xGaxSe2 − ySy (CIGS) solar cells is explored, using a hydrazine-based approach to deposit the absorber films. Power conversion efficiencies of 10.5% and 8.4% have been achieved for CIGS devices (0.45 cm2 device area) processed at 400 °C and 360 °C, respectively, with an Sb-incorporation level at 1.2 mol % (relative to the moles of CIGS). Significant Sb-induced grain size enhancement was confirmed for these low processing temperatures using cross-sectional scanning electron microscopy, and an average 2-3% absolute efficiency improvement was achieved in Sb-doped samples compared to their Sb-free sister samples. With Sb inclusion, the CIGS film grain growth temperature is lowered to well below 450 °C, a range compatible with flexible polymer substrate materials such as polyimide. This method opens up access to opportunities in low-temperature processing of CIGS solar cells, an area that is being actively pursued using both traditional vacuum-based as well as other solution-based deposition techniques.  相似文献   

19.
BiFeO3 (BFO) films were grown on LaNiO3-coated Si substrate by a RF magnetron sputtering system at temperatures in the range of 300-700 °C. X-ray reflectivity and high-resolution diffraction measurements were employed to characterize the microstructure of these films. For a substrate temperature below 300 °C and at 700 °C only partially crystalline films and completely randomly polycrystalline films were grown, whereas highly (001)-orientated BFO film was obtained for a substrate temperature in the range of 400-600 °C. The crystalline quality of BFO thin films increase as the deposition temperature increase except for the film deposited at 700 °C. The fitted result from X-ray reflectivity curves show that the densities of the BFO films are slightly less than their bulk values. For the BFO films deposited at 300-600 °C, the higher the deposition temperature, the larger the remnant polarization and surface roughness of the films present.  相似文献   

20.
We report on the dielectric properties and leakage current characteristics of 3 mol% Mn-doped Ba0.6Sr0.4TiO3 (BST) thin films post-annealed up to 600 °C following room temperature deposition. The suitability of 3 mol% Mn-doped BST films as gate insulators for low voltage ZnO thin film transistors (TFTs) is investigated. The dielectric constant of 3 mol% Mn-doped BST films increased from 24 at in-situ deposition up to 260 at an annealing temperature of 600 °C due to increased crystallinity and the formation of perovskite phase. The measured leakage current density of 3 mol% Mn-doped BST films remained on the order of 5 × 10− 9 to 10− 8 A/cm2 without further reduction as the annealing temperature increased, thereby demonstrating significant improvement in the leakage current characteristics of in-situ grown Mn-doped BST films as compared to that (5 × 10− 4 A/cm2 at 5 V) of pure BST films. All room temperature processed ZnO-TFTs using a 3 mol% Mn-doped BST gate insulator exhibited a field effect mobility of 1.0 cm2/Vs and low voltage device performance of less than 7 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号