共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure and dielectric properties of highly (100)-oriented PST thin films deposited on MgO substrates 总被引:1,自引:0,他引:1
High-quality Pb0.4Sr0.6TiO3 (PST) thin films have been epitaxially grown on MgO (100) substrates at various substrate temperatures by the pulsed laser deposition (PLD) technique. Their crystalline phase structures and surface morphology were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their in-plane orientation was observed by the Phi scans on the (111) plane. Their dielectric properties were measured by a precision impedance analyzer. Results show that the perovskite phase was stable in PST thin film. The crystalline phase formation of the thin film depended on the deposition temperature. The phase formation ability and (100)-orientation of these films were increased with increasing deposition temperature. Both of the high tunabilities and low dielectric loss of the thin films show that the (100)-oriented PST is a potential material that can be used for tunable applications. 相似文献
2.
T. Kumpika 《Thin solid films》2008,516(16):5640-5644
ZnO nanoparticle thin films were deposited on quartz substrates by a novel sparking deposition which is a simple and cost-effective technique. The sparking off two zinc tips above the substrate was done repeatedly 50-200 times through a high voltage of 10 kV in air at atmospheric pressure. The film deposition rate by sparking process was approximately 1.0 nm/spark. The ZnO thin films were characterized by X-ray diffraction, Raman spectroscopy, UV-vis spectrophotometry, and ionoluminescence at room temperature. The two broad emission peaks centered at 483 nm (green emission) and 650 nm (orange-red emission) were varied after two-step annealing treatments at 400-800 °C. Moreover, the electrical resistivity of the films was likely to be proportional to the peak intensity of the orange-red emission. 相似文献
3.
利用固相反应制备的ZnO-Li_(2.2%)陶瓷靶和RF射频磁控溅射技术在Si(100)基片上制备了高度c轴择优取向的ZnO薄膜,XRD和电性能分析表明掺杂Li离子改善了ZnO靶材的结构和性能,同时研究了不同RF溅射温度对ZnO薄膜结构与取向的影响;然后采用sol-gel前驱单体薄膜制备方法,以ZnO为过渡层淀积PZT薄膜,探讨高度c轴(002)择优取向ZnO薄膜对PZT薄膜结构与性能的影响,实验发现在PZT/ZnO异质结构中,致密、均匀和高度c轴择优取向的ZnO可作为晶核,促进PZT钙钛矿结构转化、晶粒(110)择优取向生长,相应降低PZT薄膜的退火温度. 相似文献
4.
The structural, electrical and optical properties of Nb-doped ZnO films were investigated with different Nb contents (0, 0.15, 0.31, 0.46, 0.62, and 0.94 at.%) in this article. The film with 0.46 at.% Nb content showed the lowest resistivity of 8.95 × 10− 4 Ω cm and high transmittance about 80% with high c-axis orientation. The undoped ZnO film showed a semiconducting behavior. And Nb-doped ZnO films showed a metal-semiconductor transition (MST), which was connected with localization of degenerate electrons. The films showed metallic conductivity at temperatures closer to the ambient temperature and semiconducting behavior at lower temperatures. It was noted that the NZO films with much lower Nb concentration of 0.15 at.% presented MST compared with other transparent conducting oxides films. 相似文献
5.
ZnO thin films were grown on Si (111) substrates by pulsed laser deposition (PLD) at various oxygen pressures in order to investigate the structural and optical properties of the films. The optical properties of the films were studied by photoluminescence spectra using a 325 nm He-Cd laser. The structural and morphological properties of the films were investigated by XRD and AFM measurements, respectively. The results suggest that films grown at 20 Pa and 50 Pa have excellent UV emission and high-quality crystallinity. The research of PL spectra indicates that UV emission is due to excitonic combination, the green band is due to the replacing of Zn in the crystal lattice for O and the blue band is due to the O vacancies. 相似文献
6.
ZnO薄膜的最新研究进展 总被引:14,自引:2,他引:12
ZnO是一种新型的Ⅱ-Ⅳ族半导体材料,文章详细介绍了ZnO薄膜在其晶格特性,光学、电学和压电性能等方面的研究,特别是ZnO薄膜的紫外受激辐射特性,另外,对ZnO的p型掺杂和p-n结特性的最新进展也作了探讨。 相似文献
7.
Undoped and Ga doped ZnO thin films (1% GZO, 3% GZO and 5% GZO) were grown on c-Al2O3 substrates using the 1, 3 and 5 at. wt.% Ga doped ZnO targets by pulsed laser deposition. X-ray diffraction studies revealed that highly c-axis oriented, single phase, undoped and Ga doped ZnO thin films with wurtzite structure were deposited. Micro-Raman scattering analysis showed that Ga doping introduces defects in the host lattice. The E2High mode of ZnO in Ga doped ZnO thin film was observed to shift to higher wavenumber indicating the presence of residual compressive stress. Appearance of the normally Raman inactive B1 modes (B1Low, 2B1Low and B1High) due to breaking of local translational symmetry, also indicated that defects were introduced into the host lattice due to Ga incorporation. Band gap of the Ga doped ZnO thin films was observed to shift to higher energy with the increase in doping concentration and is explicated by the Burstein-Moss effect. Electrical resistivity measurements of the undoped and GZO thin films in the temperature range 50 to 300 K revealed the metal to semiconductor transition for 3 and 5% GZO thin films. 相似文献
8.
Fumikazu Imai Kimio Kunimori Takaaki Manabe Toshiya Kumagai Hisakazu Nozoye 《Thin solid films》1997,310(1-2):184-193
We synthesized titanium oxide thin films on MgO(100) single-crystal substrates by two reactive deposition methods and compared the structures of the thin films formed by these methods. In one method (pulsed-molecular-beam deposition method), molecular oxygen is supplied to the substrates by using a pulsed-molecular-oxygen beam source and deposition of one unit layer of titanium and subsequent supply of molecular oxygen are repeatedly performed. In the other method (radical beam deposition method), atomic oxygen is irradiated to the substrates by using an atomic oxygen beam generated by the radical beam source and irradiation of the atomic oxygen and deposition of titanium are simultaneously performed. In the case of the pulsed-molecular-beam deposition method, the crystal structure was changed by increasing the number of oxygen pulses supplied from the beam source. We found that the crystal structure of titanium oxide depended on the composition ratio of O:Ti in the film. The maximum ratio of O:Ti attainable by this method was 1.85, and at this ratio, (100)-oriented pseudorutile was formed. In the case of the radical beam deposition method, (100)-oriented anatase was formed below the titanium deposition rate of 0.10 nm/s and pseudorutile (TiO2−δ) was formed above 0.15 nm/s. The pseudorutile structure synthesized on this experiment was very stable in air. We concluded that the crystal structure of the pseudorutile is a new crystal structure of titanium oxide. 相似文献
9.
The c-axis-oriented epitaxial thin films of Mn-doped Pb1−xLaxTi1−x/4O3 (PLT) on (001) Pt/MgO substrates were prepared by rf-magnetron sputtering. To investigate the effect of the doped ion, 0-1.7 mol% MnO2 added to the PLT target powder. The temperature dependence of the relative dielectric constant ?r measurements and modified Curie-Weiss plots suggested that the increasing of diffuseness n was induced by high-La substitution and the diffuseness n of PLT thin films decreased by the addition of Mn, considerably. Inner stress and thermodynamic analysis were carried out and the results propose that the increasing of γ with Mn doping caused by increasing the misfit strain of the c-axis-oriented epitaxial PLT thin films and substrate. As a result, giant pyroelectric coefficient (γ = 15.8 × 10−8 C/cm2 K) of Mn-doped epitaxial PLT thin film was achieved. 相似文献
10.
Thin films of undoped and lithium-doped Zinc oxide, (Zn1 − xLix)O; x = 0, 0.05, 0.10 and 0.20 were prepared by sol-gel method using spin-coating technique on silicon substrates [(111)Pt/Ti/SiO2/Si)]. The influence of lithium doping on the structural, electrical and microstructural characteristics have been investigated by means of X-ray diffraction, leakage current, piezoelectric measurements and scanning electron microscopy. The resistivity of the ZnO film is found to increase markedly with low levels (x ≤ 0.05) of lithium doping thereby enhancing their piezoelectric applications. The transverse piezoelectric coefficient, e31? has been determined for the thin films having the composition (Zn0.95Li0.05)O, to study their suitability for piezoelectric applications. 相似文献
11.
Y.R. SuiB. Yao L. XiaoL.L. Yang Y.Q. LiuF.X. Li M. GaoG.Z. Xing S. LiJ.H. Yang 《Thin solid films》2012,520(18):5914-5917
The B-N codoped p-type ZnO thin films have been prepared by radio frequency magnetron sputtering using a mixture of nitrogen and oxygen as sputtering gas. The effect of annealing temperature on the structural, electrical and optical properties of B-N codoped films was investigated by using X-ray diffraction, Hall-effect, photoluminescence and optical transmission measurements. Results indicated that the electrical properties of the films were extremely sensitive to the annealing temperature and the conduction type could be changed dramatically from n-type to p-type, and finally changed to weak p-type in a range from 600 °C to 800 °C. The B-N codoped p-type ZnO film with good structural, electrical and optical properties can be obtained at an intermediate annealing temperature region (e.g., 650 °C). The codoped p-type ZnO had the lowest resistivity of 2.3 Ω cm, Hall mobility of 11 cm2/Vs and carrier concentration of 1.2 × 1017 cm− 3. 相似文献
12.
Thin films were grown on (001) SiO2, SiO2/(100) Si or (100) MgO substrates by laser ablation of neodymium-doped potassium gadolinium tungstate (Nd:KGW) single crystal target. The films were deposited at temperatures between room temperature and 750 °C and pressures between 1 × 10− 4 Pa and 50 Pa of oxygen ambient. The influence of the deposition conditions on the composition, structure, morphology and electrical properties of the films was investigated. Special attention was paid to the films deposited in vacuum (1 × 10− 4 Pa) or at very low oxygen pressures. Under such conditions, the potassium (K), gadolinium (Gd) and oxygen (O) content decreased strongly as the temperature was increased. At room temperature, the films were K and O stoichiometric, in contrast with Gd, which showed a concentration twice higher. The films were polycrystalline, with the exception of those deposited at temperatures below 500 °C, which were amorphous. However, all were smooth and dense. The films grown in vacuum and at temperatures between 500 and 700 °C consist mainly of “â-tungsten” - tungsten oxide (W3O) phase. The films grown on SiO2/Si possessed the best surface quality with nano-size relief. The resistivity measurements as a function of the temperature showed that the films produced in vacuum and at temperatures below 500 °C were highly insulating, whereas at 600 °C they exhibited semiconducting behavior or a metallic one at 700 °C. This behavior can be attributed to the existence of various valence states for tungsten below W6+ in the films and to their crystal structure. 相似文献
13.
We report on the epitaxial growth and characterization of yttria-stabilized zirconia (YSZ) films on X-cut LiNbO3 single crystals. Epitaxial (100) YSZ films were synthesized by the on-axis RF magnetron sputtering technique. Extensive analyses of the structure and microstructure of films with different thickness reveals the existence of an Li-deficient phase, LiNb3O8, at the interface between the substrate and the film. The origin of the presence of this interface is discussed, as well as its consequences on the structural and morphologic properties of the epitaxial YSZ film. 相似文献
14.
15.
The effect of annealing on structural, electrical, and optical properties of Ga-doped ZnO (GZO) films prepared by RF magnetron sputtering was investigated in air and nitrogen. GZO films are polycrystalline with a preferred 002 orientation. The resistivities of annealed films are larger than the as-deposited. The transmittance in the near IR region increases greatly and the optical band gap decreases after annealing. The photoluminescence spectra is composed of a near band edge emission and several deep level emissions (DLE) which are dominated by a blue emission. After annealing, these DLEs are enhanced evidently. 相似文献
16.
M.G. TsoutsouvaC.N. Panagopoulos D. PapadimitriouI. Fasaki M. Kompitsas 《Materials Science and Engineering: B》2011,176(6):480-483
Zinc oxide (ZnO) thin films were deposited on soda lime glass substrates by pulsed laser deposition (PLD) in an oxygen-reactive atmosphere. The structural, optical, and electrical properties of the as-prepared thin films were studied in dependence of substrate temperature and oxygen pressure. High quality polycrystalline ZnO films with hexagonal wurtzite structure were deposited at substrate temperatures of 100 and 300 °C. The RMS roughness of the deposited oxide films was found to be in the range 2-9 nm and was only slightly dependent on substrate temperature and oxygen pressure. Electrical measurements indicated a decrease of film resistivity with the increase of substrate temperature and the decrease of oxygen pressure. The ZnO films exhibited high transmittance of 90% and their energy band gap and thickness were in the range 3.26-3.30 eV and 256-627 nm, respectively. 相似文献
17.
Yanwei Huang 《Thin solid films》2010,518(8):1892-8340
Tungsten-doped tin oxide (SnO2:W) transparent conductive films were prepared on quartz substrates by pulsed plasma deposition method with a post-annealing. The structure, chemical states, electrical and optical properties of the films have been investigated with tungsten-doping content and annealing temperature. The lowest resistivity of 6.67 × 10− 4 Ω cm was obtained, with carrier mobility of 65 cm2 V− 1 s− 1 and carrier concentration of 1.44 × 1020 cm− 3 in 3 wt.% tungsten-doping films annealed at 800 °C in air. The average optical transmittance achieves 86% in the visible region, and approximately 85% in near-infrared region, with the optical band gap ranging from 4.05 eV to 4.22 eV. 相似文献
18.
Optical and electrical properties were studied on thin polycrystalline ZnO films (200-nm thick) deposited on glass substrates at 200 °C by a DC-arc ion plating method (URamoto-Tanaka-type ion plating method). Effects of the oxygen flow rate (OFR) on film properties were examined. The resistivity of undoped films changed from 4.2×10−3 to 9.6×10−1 Ω cm, corresponding to the carrier concentration of 1.0×1020-1.2×1018 cm−3, depending on the increase in OFR from 0 to 40 sccm. The Hall mobility tends to be the maximum value of 28 cm2 (V s)−1 at OFR of 10 sccm. Photoluminescence (PL) spectra exhibited a dominant near-band-edge (NBE) emission together with weak PL bands at 2.2 and 3.2 eV. Intensity of NBE was maximum at OFR of 10 sccm. Intensity of the PL band at 2.2 eV increased with increase in OFR. As a result of Ga-doping, the resistivity decreased and the carrier concentration increased by one order of magnitude. The optical transmittance was more than 90% in 400-1200 nm. The ZnO:Ga (3 and 4 wt.% Ga-doped) thin films with the lowest resistivity of 2.6×10−4 Ω cm, the highest mobility of 25 cm2 (V s)−1, and the highest PL intensity were obtained at OFR of 10 sccm. Further increase of OFR led to the decrease in both mobility and PL intensity. 相似文献
19.
M. Zaj?c K. Freindl T. ?l?zakM. ?l?zak N. SpiridisD. Wilgocka-?l?zak J. Korecki 《Thin solid films》2011,519(16):5588-5595
The electronic and magnetic properties of epitaxial Fe3O4 (001) films on MgO(100) substrates were studied throughout the 2.5- to 30-nm thickness range using conversion electron Mössbauer spectroscopy. Despite the superparamagnetism that was observed for film thickness below 5 nm, the Verwey transition persisted even for the thinnest film. Temperature-dependent Mössbauer measurements between 80 K and 400 K revealed that the activation energy for the magnetic moment fluctuations in the 3-nm magnetite film is higher than the magnetic anisotropy energy by an order of magnitude. 相似文献
20.
柔性衬底铝掺杂氧化锌透明导电膜的特性研究 总被引:5,自引:0,他引:5
室温下采用射频磁控溅射法在有机薄膜-聚丙烯己二酯(polypropylene adipate,PPA)衬底上制备出了ZnO:Al(AZO)透明导电膜。其它制备参数保持不变的条件下通过改变淀积时间得到厚度不同的薄膜,并对不同厚度AZO薄膜的结构特性、光学特性和电学特性进行了研究。 相似文献