首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most of the anodic aluminum oxide (AAO) templates are performed by potentiostatical method at 0-10 °C to inhibit the Joule's heat enhanced dissolution in aluminum oxide for well-ordered cell configuration. In this article, we propose the hybrid pulse anodization (HPA) method with effective suppression of Joule's heat generation to fabricate AAO at room temperature. Effects of purity of aluminum (Al) foils and pulse voltage on the evolution of pore characteristics have been investigated. The AAO morphology is captured by scanning electron microscope and analyzed via gray-scale imaging in order to identify the pore size distribution. The increased applied potential results in the widened pores and non-uniform cell arrangement due to the increased current density and variation. Moreover, low-purity Al foils lead to the reduced AAO distribution uniformity owing to the uneven electric field induced pits on the Al surface for inferior pore arrangement. Extending both the positive and negative pulse period from 1 s to 5 s during HPA can enhance the distribution uniformity of AAO from high-purity Al by up to about 95%. In addition, the relationship between AAO configuration and Al purity and pulse voltage is further discussed and established.  相似文献   

2.
A fabrication method for one-step anodization of an anodic aluminum oxide (AAO) template with nanopore arrays using pretreated high purity aluminum foil is reported in this article. Morphology of the AAO was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Results showed that porous AAO with ideal nanopore arrays can be fabricated by one-step anodization fabrication technology on high purity aluminum foil which had been anodized at 45?V direct current (DC), in 0°C, 0.5?M H2C2O4 solution for 48 hours. The average pore diameter and the interpore distance were 80?nm and 120?nm, respectively. Nanopores in porous AAO had very narrow size distribution and were arranged into hexagonal array. The formation mechanism of nanopore arrays in porous AAO is discussed. Porous AAO with ideal nanopore arrays provide an ideal template for preparation of many one-dimensional nanomaterials. One-step anodization of AAO is a simpler procedure and more applicable in industrial application than the previous two-step anodization technology.  相似文献   

3.
利用电化学阳极氧化的方法,在草酸溶液中,精确控制反应条件,在高纯铝片表面有序生长了纳米多孔氧化铝膜。试验中,分别采用一次阳极氧化和二次阳极氧化方法制备氧化铝膜。利用H3PO4溶液浸泡法对氧化铝膜进行扩孔处理。通过扫描电子显微镜对样品进行表征分析。结果发现,二次阳极氧化制备的氧化铝膜的孔洞分布较一次氧化的更为规则有序,并且孔径大小均匀一致。扫描电镜观察显示,氧化铝膜的扩孔过程可以去掉阻碍层,并调节孔径大小,溶去二次氧化后黏附在氧化层表面的一些杂质,从而使氧化铝模板更为规则有序,孔径均一。这种经过二次阳极氧化和扩孔处理得到多孔阳极氧化铝模板的方法简单,成本较低,可以为后续的纳米材料合成提供高质量的合成模板。  相似文献   

4.
Lee W  Kim JC 《Nanotechnology》2010,21(48):485304
A new anodization method for the preparation of nanoporous anodic aluminum oxide (AAO) with pattern-addressed pore structure was developed. The approach is based on pulse anodization of aluminum employing a series of potential waves that consist of two or more different pulses with designated periods and amplitudes, and provides unique tailoring capability of the internal pore structure of anodic alumina. Pores of the resulting AAOs exhibit a high degree of directional coherency along the pore axes without branching, and thus are suitable for fabricating novel nanowires or nanotubes, whose diameter modulation patterns are predefined by the internal pore geometry of AAO. It is found from microscopic analysis on pulse anodized AAOs that the effective electric field strength at the pore base is a key controlling parameter, governing not only the size of pores, but also the detailed geometry of the barrier oxide layer.  相似文献   

5.
以硫酸和草酸溶液为电解液,采用二次阳极氧化法制备出高度长程有序的纳米孔氧化铝(AAO)模板,并结合扫描电子显微镜(SEM)对其微观结构及形貌进行了观察和表征.通过研究不同的氧化电压和电解液浓度对AAO模板纳米孔形貌(孔径、孔间距、面密度和长程有序性)的影响,得到了最佳的氧化电压和电解液浓度.  相似文献   

6.
Porous anodic aluminum oxide (AAO) thin films on quartz substrates were fabricated via evaporation of a 100-nm thick Al, followed by anodization with different durations and pore widening and Al removal by chemical etching. The transmittance and reflectance of AAO films on quartz substrates were measured by optical spectrophotometry. The microstructure and morphology were examined by scanning electron microscopy. The pore diameter of AAO films after pore widening and Al removal is 60 ± 4 nm and the interpore distance is 88 ± 5 nm. It is found that the reflectance decreases and the transmittance increases with the increase of the anodization time and pore widening. Compared to a bare substrate, the transmittance of AAO films after pore widening and Al removal is about 3.0% higher, while the reflectance is about 3.0% lower over a wide wavelength range. Additionally, after pore widening and Al removal, when AAO films are prepared on both sides of the quartz substrate, the highest transmittance is about 99.0% in the wavelength range 570-680 nm. The optical constants and thickness of AAO films after pore widening and Al removal were retrieved from normal incidence transmittance data. Results show that the refractive index is lower than 1.25 in the visible optical region and that the porosity is about 0.70.  相似文献   

7.
在0.3mol/dm3草酸溶液中,通过不同纯度铝的恒电位二次阳极氧化制备了纳米孔氧化铝模板,并用场发射扫描电子显微镜(FE-SEM)和原子力显微镜(AFM)观察模板结构.实验结果表明,一次氧化除膜后低纯度铝基体表面呈现较为规则的六边形结构,这种蜂巢结构有利于二次氧化过程中获得有序度更高的纳米孔模板.低纯度铝制备的模板表面被晶界分隔为微小的区域,只是在较窄区域内才出现六边形规则排列的纳米孔.恒电位40V时所得模板经扩孔处理后,孔径由35nm增大到100nm左右,且孔径大小几乎一致.从纳米孔的有序度来看,由低纯度铝制备模板还需要进一步优化阳极氧化参数.  相似文献   

8.
A simple method for penetrating the barrier layer of an anodic aluminum oxide (AAO) film and for detaching the AAO film from residual Al foil was developed by reversing the bias voltage in situ after the anodization process is completed. With this technique, we have been able to obtain large pieces of free-standing AAO membranes with regular pore sizes of sub-10 nm. By combining Ar ion milling and wetting enhancement processes, Au nanowires were grown in the sub-10 nm pores of the AAO films. Further scaling down of the pore size and extension to the deposition of nanowires and nanotubes of materials other than Au should be possible by further optimizing this procedure.  相似文献   

9.
End-closed NiCoFe-B nanotube arrays by electroless method   总被引:1,自引:0,他引:1  
A novel approach is obtained during the fabrication of NiCoFe-B nanotube arrays via electroless method. Porous anodic aluminum oxide (AAO) templates fabricated by anodization of aluminum foil were sensitized using PdCl2 solution and immersed into electroless plating baths at room temperature to produce nanotube arrays. Compositional and morphological properties of the nanotube arrays are characterized. Results indicates the formation of end-closed nanotubes with the dimension of 100-130 nm in outside diameter, which is determined by the pore size of the AAO template, and about 15 nm in thickness of tube walls. The possible formation mechanism of end-closed metallic nanotube arrays is discussed.  相似文献   

10.
高度有序多孔阳极氧化铝模板的制备   总被引:1,自引:0,他引:1  
为了得到纳米孔排列高度有序的多孔阳极氧化铝模板,以0.3 mol·L-1的草酸为电解液研究了模板的制备工艺.采用场发射扫描电子显微镜(FE-SEM)对多孔氧化铝模板的表面形貌进行表征,X射线衍射分析高纯铝及氧化膜的结构.实验结果表明,铝基体不经过高温退火处理,同样能够得到高度有序的氧化铝膜,简化了多孔氧化铝膜的制备工艺.分别讨论了阳极氧化电压和电解液温度对多孔阳极氧化铝膜的形貌及孔径的影响,并对一步法和两步法制得的多孔氧化铝膜进行比较,结果表明,两步阳极氧化法制备的多孔氧化铝模板的有序性优于一步氧化法.XRD分析证实,多孔氧化铝膜由非晶态的Al2O3组成.  相似文献   

11.
A method for surface engineering of structural gradients with nanopore topography using the self-ordering process based on electrochemical anodization of aluminum is described. A distinct anodization condition with an asymmetrically distributed electric field at the electrolyte/aluminum interface is created by nonparallel arrangement between electrodes (tilted by 45°) in an electrochemical cell. The anodic aluminum oxide (AAO) porous surfaces with ordered nanopore structures with gradual and continuous change of pore diameters from 80 to 300 nm across an area of 0.5-1 cm were fabricated by this anodization using two common electrolytes, oxalic acid (0.3 M) and phosphoric acid (0.3 M). The formation of pore gradients of AAO is explained by asymmetric and gradual distribution of the current density and temperature variation generated on the surface of Al during the anodization process. Optical and wetting gradients of prepared pore structures were confirmed by reflective interferometric spectroscopy and contact angle measurements showing the ability of this method to generate porous surfaces with multifunctional gradients (structural, optical, wetting). The study of influence of pore structures on cell growth using the culture of neuroblastoma cells reveals biological relevance of nanopore gradients and the potential to be applied as the platform for spatially controllable cell growth and cell differentiation.  相似文献   

12.
Local drug delivery system was demonstrated by using drug-eluting stents coated with nanoporous anodic aluminum oxide (AAO) for controlled drug release. 316 stainless steel coronary stents were coated with nanoporous AAO, which was fabricated by anodization of Al deposited on stents. Effects of diameter and depth of AAO on the release of drug were investigated. Image of the AAO pore diameter and depth were examined by SEM. Amount of the drug release from the AAO with various pore diameters and depths was analyzed by HPLC.  相似文献   

13.
Solid-supported thin films of self-organized nanoporous anodic aluminum oxide (AAO) have been widely employed for the template preparation of nanostructured functional materials. Recently, the use of nanoporous AAO thin films in optical waveguide spectroscopy (OWS) has been explored for high sensitivity, in situ monitoring of processes occurring within these nanoporous templates. In this contribution, we demonstrate a strategy for mounting bulk anodized AAO thin films on heterogeneous solid-supports suitable for waveguide sensing experiments. Unlike conventional preparations of AAO thin films by anodization of vacuum- or electrochemically deposited Al thin films, the full range of techniques available to anodize bulk Al may potentially be applied with the present method. Moreover, we show that AAO thin films mounted on glass substrates can have superior waveguide coupling properties compared to conventionally prepared samples. The nanostructure of the AAO can be well characterized by an EMT-OWS analysis, demonstrated by comparing scanning electron microscopy images of the AAO and the pore dimensions calculated from an effective medium theory (EMT) analysis of the film refractive index measured by OWS. Finally, using a curved metallic substrate as an example, we show that our mounting technique can be used as a general strategy to functionalize objects with nanoporous AAO films.  相似文献   

14.
Chen SY  Chang HH  Lai MY  Liu CY  Wang YL 《Nanotechnology》2011,22(36):365303
Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.  相似文献   

15.
Silver nanoparticles were evenly deposited in the pores of freestanding porous anodic aluminum oxide (AAO) templates via a chemical route. In the precursor, Ag+ ions were complexed with ammonia and reduced to Ag by adding an excess amount of acetaldehyde. After tens of minutes of plating at 50 °C, well-crystallized Ag nanoparticles were uniformly deposited on the pore walls of the porous AAO templates. Field emission scanning electron microscopy was used to estimate the size and distribution of the Ag nanoparticles. X-ray diffraction and HRTEM confirmed that the nanoparticles consisted of metallic silver.  相似文献   

16.
Anodized aluminum oxide (AAO) films with a six‐membered ring structure are reported by Shiyong Zhao, Teodor Veres, and co‐workers on p. 3004. The films, with a controlled pore diameter, are prepared by constant current anodization at a high current density. While structurally ordered arrays of nanodots have been fabricated by using this AAO template, the high pore density of this AAO structure may promote its use in many applications, for example in the preparation of mosaic nanowire arrays or photonic devices.  相似文献   

17.
N.H. Zhao 《Materials Letters》2009,63(22):1955-1957
An easy versatile method is reported to synthesize tunable amorphous carbon nanotubes (a-CNTs) with different pore diameter, length and orientation of graphene layers at a low temperature of 450 °C in the absence of metal catalysts by using porous anodic aluminum oxide (AAO) as a template and citric acid as a precursor. Since citric acid was adsorbed by hydrogen bonds with the -OH groups at the walls of the AAO templates, which can be influenced by the concentration of H+ ions in the solution, the pH leads to the change of the orientation of graphene layers and the graphitization degree.  相似文献   

18.
Nanoporous anodic aluminium oxide has traditionally been made in one of two ways: mild anodization or hard anodization. The first method produces self-ordered pore structures, but it is slow and only works for a narrow range of processing conditions; the second method, which is widely used in the aluminium industry, is faster, but it produces films with disordered pore structures. Here we report a novel approach termed "pulse anodization" that combines the advantages of the mild and hard anodization processes. By designing the pulse sequences it is possible to control both the composition and pore structure of the anodic aluminium oxide films while maintaining high throughput. We use pulse anodization to delaminate a single as-prepared anodic film into a stack of well-defined nanoporous alumina membrane sheets, and also to fabricate novel three-dimensional nanostructures.  相似文献   

19.
In this study, high purity aluminum (Al) samples containing different levels of hydrogen were used as a base metal for anodization. To ensure constant current densities during the experiments, the voltage-time (V-t) curves were recorded. The differential ΔV/Δt curves were plotted and the energy consumed during different steps of anodization was calculated. Experimental observations show that differences in the hydrogen content affected the amount of energy consumed. The process was divided into three steps.When the voltage response at the end of step 2 exceeded 25 V, the energy consumed in steps 2 + 3 reached or exceeded 7.4 J/cm2, and the pore channels branched or merged, creating a spike in the ΔV/Δt curves in step 3. A combination of the effects of the high voltage response at the end of step 2 and the high hydrogen content in the Al samples led to the formation of an anodic aluminum oxide (AAO) film in the sulfuric acid solution, which produced crystallized boehmite. This study proposes a unique tool for understanding certain special anodic behaviors of pure Al, wherein the branching or merging of pore channels and the partial crystallization of the AAO film can be ascertained by looking at the irregularities in the ΔV/Δt curves obtained in step 3.  相似文献   

20.
Honeycomb-shaped and ordered arrays of nanopore AAO template with a uniform pores size was produced utilizing a two-step an anodization process. Highly ordered SnO2 nanorods arrays have been selectively fabricated via a convenient (immerse and filtration) technique and (vacuum and drop) setting using anodic aluminum oxide (AAO) as a hard template. The morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (FESEM), and Energy-dispersive X-ray spectroscopy (EDX) techniques. The optical characterizations were examined by UV-VIS and Photoluminescence (PL). Scanning microscopy images indicate that the SnO2 nanorods are relatively uniform with the outer diameter matching well with the pore diameter. XRD and EDX indicated that these polycrystalline SnO2 nanostructures with well-defined composition were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号