首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Ferrimagnetic bismuth substituted yttrium iron garnet BixY3 − xFe5O12 (BiYIG) films with x = 1 and 2 pulsed laser deposited onto (111) Gd3Ga5O12 (GGG) substrates were studied using magneto-optical (MO) Kerr spectroscopy in the photon energy range of 1.8-5 eV at both polar and longitudinal magnetizations. The interference at lower photon energies provided the refined film thicknesses ranging between 70 and 200 nm. The films were grown under compressive strain and displayed saturation magnetizations (μ0Ms) lower than that of their bulk counterparts due to the presence of nanograins forming BiYIG layers and/or magnetically dead interface layers. The trends in the MO spectra agree with those deduced from the published permittivity tensor data for BiYIG using a transfer matrix model applied to a film (BiYIG)-substrate (GGG) system. Due to the reduced μ0Ms the predicted amplitudes are typically higher. The agreement was improved using effective medium approach or by incorporating into the model MO passive interface layers. The information on MO activity at longitudinal magnetization in the garnet layers below 100 nm presents interest for MO imaging and magnetophotonic devices. The results suggest that the MO Kerr spectroscopy combined with MO Kerr magnetometry may represent a valuable, cheap and nondestructive tool for the characterization of magnetic garnet films less than 200 nm thick.  相似文献   

2.
We investigated the electronic properties of phase-change material Ge2Sb2Te5 (GST) films using spectroscopic ellipsometry in a wide photon energy and high temperature region. Apart from the charge carrier response, the totality of optical conductivity spectra for three phases of GST films, i.e., amorphous (AM), face-centered-cubic (FCC), and hexagonal (HEX), is quite similar, composed of two interband transitions in visible and UV regions. From optical analysis in a wide photon energy region up to 8.7 eV, we found that the intensity as well as the position of the interband transition in the visible region changes significantly as the phase of GST films turns from the amorphous to the crystalline phase, which is consistent with previous theoretical studies. In high temperature measurements above room temperature for the three phases of GST films, we found that the change of optical response for the AM phase of GST film occurs abruptly through two successive phase transitions near 150 °C and 270 °C, while the optical spectra of the FCC phase shows a change only near 270 °C. In contrast to the two above-mentioned cases, a slight change in optical spectra is observed for the HEX phase with the increasing temperature. From the measured optical spectra, we derived the temperature dependence of optical bandgap for the three phases, which are closely correlated to the change of the transport property for the GST films.  相似文献   

3.
Interfacial changes in rf sputtered Pt/Co(2.6 nm)/Pt sandwiches grown onto sapphire (Al2O3) substrates induced by irradiation of 30 keV Ga+ ions at low dose (1014 ions/cm2) have been investigated by magneto-optic polar Kerr rotation (PKR) spectroscopy between 1 and 5 eV. The irradiation resulted in an increase of PKR over the whole spectral range. The measured PKR spectra were compared with those computed from the transfer matrix formalism using known polar Kerr rotation and ellipticity spectra for Co and five CoxPt1 − x alloys. The comparison between measured and computed PKR spectra provided an in-depth profile of Co and Pt ion distributions across the sandwich and confirmed that irradiation favors alloying in the vicinity of the two interfaces. These results are in a good agreement with the profile evaluated independently by TRIDYN simulations. Our results evidence an asymmetry in the irradiation effect due to an excess of Pt-Co alloying at the upper interface. Moreover, the observation of a negative PKR peak around 3.2 eV states definitively the presence of a chemically ordered Co0.75Pt0.25 alloy phase inside the irradiated film structure.  相似文献   

4.
We have investigated the structural, elastic, electronic, optical and thermodynamic properties of the cubic spinel CdAl2O4 using accurate ab initio calculations. Computed equilibrium structural parameters are in good agreement with the available experimental data. Single-crystals elastic parameters are calculated for pressure up to 30 GPa using a conserving-volume total energy-strain method. Isotropic elastic parameters for ideal polycrystalline CdAl2O4 aggregates are computed in the framework of the Voigt-Reuss-Hill approximation. Result for band structure using the Engel-Vosko scheme of the GGA shows a significant improvement over the common GGA functionals. Optical spectra have been calculated for the energy range 0-30 eV. The peaks and structures in the optical spectra are assigned to interband transitions. Pressure dependence of the band gaps, static dielectric constant and static refractive index are also investigated. Pressure and thermal effects on some macroscopic properties are predicted using the quasi-harmonic Debye model.  相似文献   

5.
The optical spectra have been investigated for a prototypical double exchange ferromagnetic La0.67Ca0.33MnO3 with Mn substituted by V above the paramagnetic-magnetic transition temperature TC. The excitation spectra under the probe wavelength of λem = 473 nm for all samples exhibit two activation bands around 360 and 294 nm, involving an electron transfer from oxygen 2p states to the Mn d states in MnO6 octahedra. The photoluminescence spectra at λex = 290 nm have the similar spectral features for all samples. The photoluminescence spectral peaks located at 400, 473, 534, 670, 738 and 770 nm, and the corresponding photon energy is in a broad range of 3.1-1.6 eV, indicating that the PL bands could have the different origin: the self-trapped excitons localized on MnO6 octahedra; the interband transition between the O 2p and Mn 3d bands; the transition between the 3d electron states of Mn ions. So, it can be clearly seen that the electronic behavior above TC is very complicated. Our results suggest that the charge transfer from O 2p to Mn 3d has the important effects on the electronic structure, and it not only contributes to the optical transition but is helpful and even important to understand the electric, magnetic and thermal properties etc. due to the strong correlation among charge, spin and lattice in perovskite manganites.  相似文献   

6.
Broadband conductivity spectra from 100 to 1014 Hz (100 THz) were acquired for yttria-stabilized zirconia (10 mol% Y2O3-doped ZrO2, 10YSZ) to quantify contributions from conduction due to the electrolyte-electrode interface, grain boundaries, universal dielectric response (UDR), and optical phonons. The UDR contribution governed the intrinsic conductivity at all frequencies except specific frequencies in the terahertz range, where phonon contributions governed conductivity for both ceramics and single crystals. UDR parameters σ0 and σdc increased with increasing temperature, resulting in increased microwave conductivity. The complex conductivity converged at frequencies of hundreds of gigahertz due to a decrease in the power-law constant, s, with increasing temperature. The optical phonon contribution to the total conductivity, due to an increase in the damping factor γ1TO with increasing temperature, was small, while the phonon-mode frequency ω1TO affected the microwave conductivity of 10YSZ.  相似文献   

7.
Y0.5−xDyxLi1.5VO4 phosphor particles have been synthesized by a new wet-chemical method of in situ co-precipitation via assembling inorganic/organic hybrid precursors. X-ray diffraction and scanning electronic microscope show that these materials have the micrometer dimension. All the emission spectra exhibit the characteristic transitions of Dy3+, which is due to the 4F9/2 → 6H15/2 (blue) and 4F9/2 → 6H13/2 (yellow) and the concentration quenching phenomenon occurs in the system of Y0.5−xDyxLi1.5VO4.  相似文献   

8.
AgInS2 thin films were prepared by the spray pyrolysis technique using a water/ethanol solution containing silver acetate, indium chloride and thiourea. We reported our results on the characterization of tetragonal AgInS2 (chalcopyrite type) films, which were grown from indium deficient spraying solution. The films displayed a n-type conductivity with room temperature resistivities in the range between 103 and 104 Ω cm. The absorption spectra of sprayed films revealed two direct band-gaps with characteristic energies around 1.87 and 2.01 eV, which are in good agreement with the reported energy values for interband transitions from the split p-like valence band to the s-like conduction band in tetragonal AgInS2 single crystals.  相似文献   

9.
Yttrium oxide (Y2O3) thin films were grown onto Si(1 0 0) substrates using reactive magnetron sputter-deposition at temperatures ranging from room temperature (RT) to 500 °C. The effect of growth temperature (Ts) on the growth behavior, microstructure and optical properties of Y2O3 films was investigated. The structural studies employing reflection high-energy electron diffraction RHEED indicate that the films grown at room temperature (RT) are amorphous while the films grown at Ts = 300-500 °C are nanocrystalline and crystallize in cubic structure. Grain-size (L) increases from ∼15 to 40 nm with increasing Ts. Spectroscopic ellipsometry measurements indicate that the size-effects and ultra-microstructure were significant on the optical constants and their dispersion profiles of Y2O3 films. A significant enhancement in the index of refraction (n) (from 2.03 to 2.25) is observed in well-defined Y2O3 nanocrystalline films compared to that of amorphous Y2O3. The observed changes in the optical constants were explained on the basis of increased packing density and crystallinity of the films with increasing Ts. The spectrophotometry analysis indicates the direct nature of the band gap (Eg) in Y2O3 films. Eg values vary in the range of 5.91-6.15 eV for Y2O3 films grown in the range of RT-500 °C, where the lower Eg values for films grown at lower temperature is attributed to incomplete oxidation and formation of chemical defects. A direct, linear relationship between microstructure and optical parameters found for Y2O3 films suggest that tuning optical properties for desired applications can be achieved by controlling the size and structure at the nanoscale dimensions.  相似文献   

10.
Amorphous thin films of glassy alloys of Se75S25 − xCdx (x = 2, 4 and 6) were prepared by thermal evaporation onto chemically cleaned glass substrates. Optical absorption and reflection measurements were carried out on as-deposited and laser-irradiated thin films in the wavelength region of 500-1000 nm. Analysis of the optical absorption data shows that the rule of no-direct transitions predominates. The laser-irradiated Se75S25 − xCdx films showed an increase in the optical band gap and absorption coefficient with increasing the time of laser-irradiation. The results are interpreted in terms of the change in concentration of localized states due to the shift in Fermi level. The value of refractive index increases decreases with increasing photon energy and also by increasing the time of laser-irradiation. With the large absorption coefficient and change in the optical band gap and refractive index by the influence of laser-irradiation, these materials may be suitable for optical disc application.  相似文献   

11.
We report the growth of thin films of the cobaltite YBaCo4O7 + δ by means of the dc magnetron sputtering technique at high oxygen pressure onto r (1012) sapphire substrates. The films were characterized according to their structural, morphological, electrical, magnetic, and optical properties. An analysis of the X-ray diffraction pattern indicates that the films grown on r-sapphire substrates are single phase polycrystalline. Despite the high growth temperature (850 °C), no indication of interface reaction (formation of BaAlO4 or Y2O3) is detected. Measurements of resistivity as a function of temperature reveal a semiconductor-like character of the grown films. No indication of possible transitions is observed in the temperature range 50-300 K. The electronic transport mechanism seems to be dominated by Mott variable range hopping (VRH) conduction. Fitting the VRH model to the experimental data allows one to estimate the density of states of the material at the Fermi level N(EF). The resistivity measured in magnetic fields as strong as 5 T increases notably, and positive magnetoresistance values as high as ~ 60% at 100 K are obtained. Magnetization measurements show well defined hysteresis loops at 300 K and 5 K. Nevertheless, calculated values of the magnetization have ended up being too small for the ferro- or ferrimagnetic states. Raman spectra, in turn, allow one to identify bands associated with vibrating modes of CoO4 and YO6 in tetrahedral and octahedral configurations, respectively. Additional bands which seem to stem from Co ions in octahedral configuration are also clearly identified. Measurements of transmittance and reflectance show two well defined energy gaps at 3.7 and 2.2 eV.  相似文献   

12.
We report the room temperature spectroscopic ellipsometry study of Cu2ZnGeSe4 and Cu2ZnSiSe4 crystals, grown by modified Bridgman technique. Optical measurements were performed in the range 1.2–4.6 eV. The spectral dependence of the complex pseudodielectric functions as well as pseudo- complex refractive index, extinction coefficient, absorption coefficient, and normal-incidence reflectivity of Cu2ZnGeSe4 and Cu2ZnSiSe4 crystals were derived. The observed structures in the optical spectra were analyzed by Adachi's model and attributed to the band edge transitions and higher lying interband transitions. The parameters such as strength, threshold energy, and broadening, corresponding to the E0, E1A and E1B interband transitions, have been determined using the simulated annealing algorithm.  相似文献   

13.
The effects of ZnO additive on the phase formation, microstructure and electrical conduction of Y-doped BaSnO3 have been investigated. The single-phase and dense BaSn0.75Y0.25O3−δ compound with 4 mol% ZnO additive was successfully prepared after sintering at 1300 °C, which significantly reduces the sintering temperature. The conductivities measured under dry and wet air atmospheres reveal that the bulk conductivity of BaSn0.71Y0.25Zn0.04O3−δ is much lower than that of BaSn0.75Y0.25O3−δ. However, ZnO as a sintering aid does not affect the bulk conductivity. The total conductivity of BaSn0.75Y0.25O3−δ with ZnO as the sintering aid is slightly higher than that of unmodified BaSn0.75Y0.25O3−δ, and reaches 2.4 × 10−3 S cm−1 at 621 °C. Therefore, this material can be used as a proton-conducting electrolyte for intermediate temperature solid oxide fuel cells.  相似文献   

14.
Infrared optical properties of SrBi2−xNdxNb2O9 (SBNN) ceramics with different Nd compositions (from 0 to 0.2) have been investigated by near-normal incident reflectance technique. The experimental spectra in the wavenumbers range of 350-1500 cm−1 were analyzed using the Lorentz oscillator model for five infrared-active phonon mode observed. It is found that the frequencies of the NbO6 tilting and symmetric stretching modes linearly decrease with the Nd composition due to the octahedra distortion. The high-frequency dielectric constant varies in the range from 4.55 ± 0.04 to 4.80 ± 0.04. Owing to the contribution from the stronger electronic transitions, the real part of dielectric function Re(?) is estimated to about 4.0 in the high-frequency transparent region.  相似文献   

15.
Nanocrystalline thin films of mixed rare earth oxides (Y1-xErx)2O3(0.1 ≤ x ≤ 1) were deposited by electron beam evaporation technique on polished fused silica glass at different substrate temperatures (200-500 °C). The effect of the substrate temperature as well as the mixing parameter (x) on the structural and optical properties of these films has been investigated by using X-ray diffraction (XRD), energy dispersive x-ray analysis and optical spectrophotometry. XRD investigation shows that mixed rare earth oxides film (Y1-xErx)2O3 grown at lower substrate temperature (Ts ≤ 300 °C) are poorly crystalline, whereas films grown at higher substrate temperatures (Ts ≥ 400 °C) tend to have better crystallinity. Furthermore, the mixing parameter (x) was found to stabilize the cubic phase over the entire of 0.1 ≤ x ≤ 1. The crystallite size of the films was found to vary in the range from 25 to 39 nm. Optical band gap of the films was deterimined by analysis of the absoprtion coeffifcient. For films deposited at different substrate temperatures direct and indirect transitions occur with energies varied from 5.29 to 5.94 eV and from 4.23 to 4.51 eV, respectively. However, films of different composition x, give optical band gap varied from 6.14 to 5.86 eV for direct transition and from 5.23 to 4.22 eV for indirect transitions. Consequently, one may conclude that it is possible to tune the energy band gap by relative fraction of constituent oxides. It was found that optical constants increase with increasing the substrate temperature. Nevertheless, the values of n and k decrease with increasing the mixing parameter, x.  相似文献   

16.
The electrical properties of reduced LAMOX-type oxides (La1.9Y0.1Mo2−yWyO9−δ with y = 0, y = 0.5, y = 1.0) were investigated by complex impedance spectroscopy.When reduced at 605 °C in hydrogen, La1.9Y0.1Mo2O9−δ is 10 times and 3 × 105 times more conductive at 605 and 180 °C, respectively, than in air at the same temperatures. The conductivity curve presents a low slope (0.37 eV versus 1.2 eV in air).Besides, the stabilising effect of tungsten against reduction is evidenced, in good agreement with previous reports.In low oxygen partial pressures however (PO2 < 10−18 Pa), the decomposition of the materials is detected, whatever the tungsten content (0 ≤ y ≤ 1 in La1.9Y0.1Mo2−yWyO9−δ). This observation points out the efficiency limit of Mo6+/W6+ substitution to stabilise the structure against reduction, and the limit for an application as IT-SOFC electrolyte.However, given the high electronic conductivity upon reduction, the application of these materials in IT-SOFC electrodes could be considered.  相似文献   

17.
n-GaN/MEH-PPV thin film heterojunction diode was fabricated by depositing MEH-PPV thin film using spin-coating process on n-GaN (0 0 0 1). The junction properties were evaluated by measuring I-V characteristics. I-V characteristics exhibited well defined rectifying behavior with a barrier height of 0.89 eV and ideality factor of 1.7. The optical band gap of the MEH-PPV film using optical absorption method was found to be 2.2 eV and the fundamental absorption edge in the film is formed by the direct allowed transitions. At higher electric fields, the conductivity mechanism of the film shows a trap charge limited current mechanism. The obtained results indicate that the electronic parameters of the heterojunction diode are affected by properties of MEH-PPV organic film.  相似文献   

18.
Co-doped ceria of Ce1−xGdxyYyO2−0.5x, wherein x = 0.15 and 0.2, 0 ≤ y ≤ x, were prepared by glycine-nitrate method. Their structures and ionic conductivities were characterized by X-ray diffraction (XRD) and AC impedance spectroscopy (IS). All the electrolytes were found to be ceria-based solid solutions of fluorite type structures. Co-doping was found to effectively enhance the conductivity. In comparison to the singly doped ceria, the co-doped ceria showed much higher ionic conductivities at 673-973 K. At 773 K, the ionic conductivity of Ce0.8Gd0.05Y0.15O1.9 is 0.013 S cm−1 which is three times as high as that of Ce0.8Gd0.2O1.9. These Gd3+and Y3+ co-doped ceria are ideal electrolyte materials of intermediate temperature solid oxide fuel cells (SOFCs).  相似文献   

19.
Transparent and conducting thin films of TiO2:Nb were prepared on glass by reactive dc magnetron sputtering in Ar + O2. Post-deposition annealing in vacuum at 450 °C led to good electrical conductivity and optical transparency. The optical properties in the sub-bandgap region were in good agreement with Drude free electron theory, which accounts for intraband absorption. The band gap of the films was found to be in the range of 3.3 to 3.5 eV and signifies the onset of interband absorption. Electrical conductivities in the 10− 3 Ω cm range were obtained both from dc electrical measurements and from analysis of the optical measurements.  相似文献   

20.
BaCe0.8Y0.2O3−δ and BaCe0.9−xYxNb0.1O3−δ (x = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35) were prepared by a solid-state reactions. It was found that the BaCe0.8Y0.2O3−δ samples decomposed into CeO2 and BaCO3 after being exposed in the atmosphere (3% CO2 + 3% H2O + 94% N2) at 700 °C for 10 h. However, samples containing Nb remains unchanged in the same conditions, demonstrating a better stability in the presence of CO2 and H2O. The conductivity of BaCe0.9−xYxNb0.1O3−δ increased with the increase of Y content (x ≤ 0.30), and the highest value was observed at x = 0.30 where a significant decrease in conductivity took place at x = 0.35. The conductivity of BaCe0.6Y0.3Nb0.1O3−δ reaches 0.01 S/cm in humid hydrogen at 700 °C, slight lower than BaCe0.8Y0.2O3−δ, 0.012 S/cm in the same conditions. Fuel cell with BaCe0.6Y0.3Nb0.1O3−δ as-prepared was successfully prepared and humidified hydrogen was supplied as fuels in evaluating the fuel cell performance. The open circuit voltage, peak power density and interfacial resistance at 700 °C were 1.02 V, 345 mW/cm2 and 0.27 Ω cm2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号