首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZnO films deposited at different oblique angles of 40, 60 and 80°, under different Ar pressures 0.27, 0.67, 1.33 and 2.67 Pa, DC currents of 0.15 and 0.25 A, and distances of 10-15 cm from the target were studied. It was found that the film grains grow at an angle to the substrate when deposition angle is above 40°. It was shown that the grains consisted of a number of small crystals growing one on top of the other and shifted towards the target with the crystal orientation not along the grain growth but perpendicular to the substrate. Crystal size decreased with the deposition angle and internal stress disappeared when α = 80°. It was found that 1.33 Pa pressure provided the best balance between the deposition parameters. Growth rate reached maximum, samples had the biggest crystal size and high crystal density. However, crystal spatial alignment changed gradually with pressure and distance.  相似文献   

2.
In this work, polycrystalline aluminum doped zinc oxide (ZnO:Al) films with c-axis (002) orientation have been grown on glass and silicon substrates by RF (radio frequency) magnetron sputtering technique, at room temperature. A systematic study of the effect of sputtering deposition parameters (i.e. RF power and argon gas pressure) on the structural, optical and electrical properties of the films was carried out. We observed that, with increasing RF power the growth rate increased, while it decreased with increasing gas pressure. As mentioned above, the films were polycrystalline in nature with a strong preferred (002) orientation. The intrinsic compressive stress was found to decrease with both increasing RF power and gas pressure, and near stress-free film was obtained at 200 W RF power and 2 × 10− 1 Pa gas pressure. The obtained ZnO:Al films, not only have an average transmittance greater than 90% in the visible region, but also have an optical band gap between 3.33 and 3.47 eV depending on the sputtering parameters. Moreover, a low value of the electrical resistivity (~ 1.25 × 10− 3 Ω cm) was obtained for the film deposited at 200 W and 2 × 10− 3 mbar.  相似文献   

3.
Thin films in the Cr-C system with carbon content of 25-85 at.% have been deposited using non-reactive DC magnetron sputtering from elemental targets. Analyses with X-ray diffraction and transmission electron microscopy confirm that the films are completely amorphous. Also, annealing experiment show that the films had not crystallized at 500 °C. Furthermore, X-ray spectroscopy and Raman spectroscopy show that the films consist of two phases, an amorphous CrCx phase and an amorphous carbon (a-C) phase. The presence of two amorphous phases is also supported by the electrochemical analysis, which shows that oxidation of both chromium and carbon contributes to the total current in the passive region. The relative amounts of these amorphous phases influence the film properties. Typically, lower carbon content with less a-C phase leads to harder films with higher Young’s modulus and lower resistivity. The results also show that both films have lower currents in the passive region compared to the uncoated 316L steel substrate. Finally, our results were compared with literature data from both reactively and non-reactively sputtered chromium carbide films. The comparison reveals that non-reactive sputtering tend to favour the formation of amorphous films and also influence e.g. the sp2/sp3 ratio of the a-C phase.  相似文献   

4.
The authors report the growth of single crystalline ZnO nanorods by direct current magnetron sputtering in the oblique angle deposition configuration near room temperature. These isolated nanorods have a diameter of  40 nm, an inter-rod spacing of  20 nm, and a height of  100 nm. The nanorods show a (002) orientation along the rod-axis which is normal to the substrate. The low temperature fabrication of single crystal ZnO nanorods may find potential applications in optoelectronics and energy conversion devices.  相似文献   

5.
We use a combination of in-situ X-ray scattering experiments during annealing and phase-field simulations to study the strain and microstructure evolution during decomposition of TiAlN thin films. The evolved microstructure is observed to depend on the initial alloy composition, where the microstructure is finer and the TiN and AlN domains formed are more interconnected and aligned in the [100] directions in the higher Al content film. The simulations show strain formation in the evolving cubic AlN and TiN domains, which is a combined effect of increasing lattice mismatch and elastic incompatibility between the domains. The experimental results show that the strain of the film is a result of defect density, thermal strains, and the phase evolution during decomposition of the cubic TiAlN. The compressive strain increases at temperatures above ~ 850 °C for Ti0.35Al0.65N and above ~ 930 °C for Ti0.53Al0.47N due to the onset of transformation to hexagonal-AlN, which is similar to the temperature where the maximum hardness of similar TiAlN films has been found. The higher driving force for decomposition in the higher Al content film results in a higher decomposition rate revealed by the simulations and earlier formation of hexagonal-AlN in this film.  相似文献   

6.
The present work demonstrates the formation of porous niobium films with separated columnar structures by oblique angle magnetron sputtering for capacitor application. The niobium films deposited on textured aluminium substrates, which had concave cell structures with the cell sizes ranging from 125 nm to 550 nm, consist of isolated columns of niobium with wider gaps between columns developing on the substrates with larger cell sizes. The surface areas of the deposited films, evaluated by the capacitance of the anodic films formed at several voltages, increased with an increase in the cell size of substrate. The surface area decreases with an increase in the formation potential of anodic films from 2 V to 10 V vs Ag/AgCl, because the gaps are filled with anodic oxide as a consequence of the large Pilling-Bedworth ratio of 2.6 for the Nb/Nb2O5 system. The reduction of the surface area is suppressed when the substrate with larger cell size is used, due to the formation of niobium columns with wider gaps, which are not filled with anodic oxide. The high surface area even at higher formation voltages of the anodic films is a requisite for capacitor application.  相似文献   

7.
The morphology and texture of Ge films grown under oblique angle vapor deposition on native oxide covered Si(001) substrates at temperatures ranging from 230 °C to 400 °C were studied using scanning electron microscopy, X-ray diffraction and X-ray pole figure techniques. A transition from polycrystalline to {001}<110> biaxial texture was observed within this temperature range. The Ge films grown at substrate temperatures < 375 °C were polycrystalline. At substrate temperatures of 375 °C and 400 °C, a mixture of polycrystalline and biaxial texture was observed. The 230 °C sample consisted of isolated nanorods, while all other films were continuous. The observed biaxial texture is proposed to be a result of the loss of the interface oxide layer, resulting in epitaxial deposition of Ge on the Si and a texture following that of the Si(001) substrates used. The rate of oxide loss was found to increase under oblique angle vapor deposition.  相似文献   

8.
Yong Zoo You 《Thin solid films》2007,515(5):2860-2863
Aluminum nitride (AlN) films were reactively deposited on (100) oriented silicon substrates by reactive radio frequency (RF) magnetron sputtering for different incidence angles and distances between substrate and target.X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to consider the influence of process parameters such as reactive gas flow rate, grazing incidence angle (α), and distance (d) between substrate and target surface on the property of AlN films. XRD results showed that AlN film prepared at a constant distance (d) of 3 cm and an incidence angle of 45° revealed a mixture of AlN (002), (100), and (101) planes, while the film prepared at α = 0° revealed a strong AlN (002) orientation which has a perpendicular growth direction to the substrate surface. AFM results showed that AlN film prepared at α = 0° exhibited more flat surface morphology than that of film prepared at α = 45°.  相似文献   

9.
Huili Wang  Yibin Li  Deen Sun 《Thin solid films》2008,516(16):5419-5423
Nanocrystalline titanium carbide (TiC) thin films were prepared by magnetron sputtering deposition at 473 K. The effect of substrate bias on microstructure and mechanical properties was studied in details using X-ray photoelectron spectroscopy, X-ray diffraction, field emission scanning electron microscopy, indentation and scanning microscratch. The TiC films exhibit a (111) preferential orientation. Substrate bias decreases grain size and deposition rate of the TiC films. The TiC films have columnar structure which becomes finer at high substrate bias. Nanoindentation hardness, Young's modulus, and toughness of the films are increased as the substrate bias goes up. However, the adhesion peaks at substrate bias of − 100 V and drops when bias is increased further.  相似文献   

10.
I.C Oliveira  H.S Maciel  C Otani 《Vacuum》2004,75(4):331-338
High quality thin aluminum nitride (AlN) films have been deposited onto a silicon (1 0 0) substrate by radio frequency magnetron sputtering of a pure Al target using different gas (Ar, N2) mixtures. The depositions were carried out at substrate temperatures varying from room temperature (plasma heating) up to 400°C. The crystalline structures were investigated by X-ray diffractometry (XRD) revealing a pronounced texture of the deposited films. Some of the compounds investigated were deposited onto a thin buffer layer of pure Al. The film surface morphology was investigated by Atom Force Microscopy (AFM) (SPM-9500J3 from Shimadzu Co), and was found to depend distinctively upon the different deposition conditions. Generally, two kinds of structures were found—a columnar one, which was densely packed or organized in planar parallel sheets, and a flat structure, (typical for mono-crystals), with rms roughness below 0.2 nm. In this paper, the influence of argon added to the sputtering gas environment on the film properties is investigated and discussed. The depth elemental distributions were calculated using 2.4 MeV 4He+ Rutherford Backscattering Spectrometry (RBS). Finally, the mechanical characteristics were described using hardness tests.  相似文献   

11.
Titanium films on Si(1 0 0) substrate were deposited by DC-magnetron sputtering. The effect of substrate temperature on the microstructural morphologies of the films was characterized by using field emission-based scanning electron microscopy/electron back scattered difffraction (FE-SEM/EBSD) and atomic force microscopy (AFM). X-ray diffraction was used to characterize the phases and crystallite size of the Ti films and it was observed that according to the first figure of this article: (0 0 2) orientation increases from 200 °C and it changes into (1 0 1) orientation from 300 °C. The SEM analysis of the Ti films, deposited in Ar atmosphere, showed two- and three-dimensional hexagonal structure of the grains at the substrate temperature of 200 °C and >200 °C, respectively. The increase in grain size of Ti films with the substrate temperature was confirmed by EBSD and AFM characterization. The average surface roughness of the Ti films has increased with increase in substrate temperature as evident from the AFM study.  相似文献   

12.
对于交流磁控溅射氧化锌铝陶瓷靶材制备ZAO薄膜,研究了氧流量、基体温度、靶电流密度、铝的掺杂量、本底真空压力和工作气体压力对ZAO薄膜电学性能的影响规律,优化了工艺参数,为工业化生产提供了实验依据.  相似文献   

13.
14.
The crystal orientation and residual stress of AlN thin films were investigated using X-ray diffraction and substrate curvature method. The AlN films were deposited on Si(100) by RF magnetron sputtering in a mixed plasma of argon and nitrogen under various substrate negative bias Vs (up to − 100 V) and deposition temperature Ts up to 800 °C. The results show that lower temperature and moderate bias favor the formation of (002) plane parallel to the substrate surface. On the contrary, strong biasing beyond − 75 V and deposition temperature higher than 400 °C lead to the growth of (100) plane. At the same time nanoindentation hardness and compressive stress measured by substrate curvature method showed significant enhancement with substrate bias and temperature. The biased samples develop compressive stress while unbiased samples exhibit tensile or compressive stress depending on plasma power and temperature. The relationships between deposition conditions and crystallographic orientation of the films are discussed in terms of surface energy minimization and ion bombardment effects.  相似文献   

15.
Current-voltage relations at different magnetron sputtering systems and gas mixtures were studied during reactive sputter deposition of titanium dioxide thin films. The main goal of this work was to investigate the influence of reactive gas mixture (Ar + O2) and system geometry on the electrical characteristics of the discharge. The geometries utilized were the conventional magnetron sputtering, hollow cathode magnetron sputtering and triode magnetron sputtering. A change in the system geometry leads to a change in the electric field distribution, which alters the working range of the discharge voltage and magnetron efficiency. It is noticed that the discharge voltage at constant current can be reduced when the geometry is altered from conventional magnetron to hollow cathode magnetron or triode magnetron, at the same time the magnetron efficiency is increased when hollow cathode magnetron or triode magnetron are used instead of conventional magnetron sputtering.  相似文献   

16.
ZrNx films were deposited by radiofrequency reactive magnetron sputtering technique in nitrogen and water vapour atmosphere varying the working temperature from room temperature to 600 °C. The films' physical properties were investigated using X-ray diffraction, Secondary Ion Mass Spectroscopy, Atomic Force Microscopy and Transmission Electron Microscopy. It was found that the increase of temperature caused a decrease in the oxygen incorporation and a transition from cubic phase of Zr2ON2 to ZrN one. The formation of nanosized crystalline particles dispersed in the amorphous matrix was observed.  相似文献   

17.
磁控溅射CrNx薄膜的制备与力学性能   总被引:10,自引:0,他引:10  
采用反应磁控溅射法在不同的氮分压下制备了一系列CrNx薄膜,并利用EDS和XRD表征了薄膜的成分和相组成,采用力学探针测量了薄膜的硬度和弹性模量。研究了氮分压对薄膜成分,相组成和力学性能的影响。结果表明,随氮分压的升高,薄膜的沉积速率明显降低,薄膜中的氮含量量增加,相应地,相组成从Cr Cr2N过渡到单相Cr2N,再逐步经Cr2N CrN过渡到单相CrN,并在Cr:N原子比为1:2和1:1时,薄膜的硬度出现极值(HV27.1GPa和HV26.8GPa),而薄膜的弹性模量则在Cr2N时呈现350GPa的最高值。  相似文献   

18.
Thin TiN films were grown on SiO2 by reactive high power impulse magnetron sputtering (HiPIMS) at a range of temperatures from 45 to 600 °C. The film properties were compared to films grown by conventional dc magnetron sputtering (dcMS) at similar conditions. Structural characterization was carried out using X-ray diffraction and reflection methods. The HiPIMS process produces denser films at lower growth temperature than does dcMS. Furthermore, the surface is much smoother for films grown by the HiPIMS process. The [200] grain size increases monotonically with increased growth temperature, whereas the size of the [111] oriented grains decreases to a minimum for a growth temperature of 400 °C after which it starts to increase with growth temperature. The [200] crystallites are smaller than the [111] crystallites for all growth temperatures. The grain sizes of both orientations are smaller in HiPIMS grown films than in dcMS grown films.  相似文献   

19.
In this work, we report the preparation of lanthanum-modified lead zirconate titanate (PLZT) thin films by RF magnetron sputtering on platinized silicon (Pt/Ti/SiO2/Si) substrate. Sputtering was done in pure argon at 100 W RF power without external substrate heating. X-ray diffraction studies were performed on the films to study the effect of post-deposition furnace annealing temperature and time on the perovskite phase formation of PLZT. Annealing at 650 °C for 2 h was found to be optimum for the preparation of PLZT films in pure perovskite phase. The effect of different annealing conditions on surface morphology of the films was examined using AFM. The dielectric, ferroelectric and electrical properties of these films were also investigated in detail as a function of different annealing conditions. The pure perovskite film exhibits better properties than the other films which have some fraction of unwanted pyrochlore phase. The remanent polarization for pure perovskite film was found to be ∼29 μC/cm2 which is almost double compared to the films having mixed phases. The dc resistivity of the pure perovskite film was found to be 7.7 × 1010 Ω cm at the electric field of ∼80 kV/cm.  相似文献   

20.
The nanostructural evolution during heat treatments of DC magnetron-sputtered Cu films deposited at different substrate bias voltages was experimentally studied. A growth chamber equipped with two magnetrons and Kapton windows for in-situ X-ray diffraction was mounted on a six-circle goniometer at a synchrotron beam line. Using Bragg-Brentano X-ray diffraction, the grain size, the texture, and the lattice constant were monitored during thermal annealing. Increasing the substrate bias voltage, the grain growth rate lowered, and the change in texture with time became smaller due to a decrease in the defect concentration. Furthermore, the grain size in the as-deposited films decreased with increasing bias voltage. The activation energy for grain growth was, within experimental errors, the same in all the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号