首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the relationship between parameters of reactive RF diode sputtering from a zinc oxide (ZnO) target and the crystalline, electrical and optical properties of n-/p-type ZnO thin films. The properties of the ZnO thin films depended on RF power, substrate temperature and, particularly, on working gas mixtures of Ar/O2 and of Ar/N2. Sputtering in Ar+O2 working gas (up to 75% of O2) improved the structure of an n-type ZnO thin film, from fibrous ZnO grains to columnar crystallites, both preferentially oriented along the c-axis normally to the substrate (〈0 0 2〉 direction). These films had good piezoelectric properties but also high resistivity (ρ≈103 Ω cm). ZnO:N p-type films exhibited nanograin structure with preferential 〈0 0 2〉 orientation at 25% N2 and 〈1 0 0〉 orientation for higher N2 content. The presence of nitrogen NO at O-sites forming NO-O acceptor complexes in ZnO was proven by SIMS and Raman spectroscopy. A minimum value of resistivity of 790 Ω cm, a p-type carrier concentration of 3.6×1014 cm−3 and a Hall mobility of 22 cm2 V−1 s−1 were obtained at 75% N2.  相似文献   

2.
Diamond-like carbon (DLC) film is a promising candidate for surface acoustic wave (SAW) device applications because of its higher acoustic velocity. A zinc oxide (ZnO) thin film has been deposited on DLC film/Si substrate by RF magnetron sputtering; the optimized parameters for the ZnO sputtering are RF power density of 0.55 W/cm2, substrate temperature of 380 °C, gas flow ratio (Ar/O2) of 5/1 and total sputter pressure of 1.33 Pa. The results showed that when the thickness of the ZnO thin films was decreased, the phase velocity of the SAW devices increased significantly.  相似文献   

3.
Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator   总被引:3,自引:0,他引:3  
This study elucidates a highly sensitive ultraviolet light detector using the combination of an oscillator circuit with a high-frequency amplifier, a matching network and a layered surface acoustic wave (SAW) device. In this structure, a ZnO thin film is simultaneously used as an active layer for UV detection and a piezoelectric layer for exciting a high-order surface acoustic wave. The microstructure and crystallization of ZnO films were investigated using the scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The SAW oscillator shows a good performance with output power of − 1.14 dBm and phase noise of −94.7 dBc at 100 kHz. Firstly, the frequency shifts of the oscillator exhibit rapid increase with the intensity of the UV light. Then the increased shifts decayed at certain UV intensity due to the saturated photogenerated carriers. An extreme frequency shift of 1017 kHz was obtained as the UV intensity reached 551 μW/cm2. The maximum sensitivity of 8.12 ppm/(μW/cm2) can be obtained in this detector.  相似文献   

4.
Textured surface boron-doped zinc oxide (ZnO:B) thin films were directly grown via low pressure metal organic chemical vapor deposition (LP-MOCVD) on polyethylene terephthalate (PET) flexible substrates at low temperatures and high-efficiency flexible polymer silicon (Si) based thin film solar cells were obtained. High purity diethylzinc and water vapors were used as source materials, and diborane was used as an n-type dopant gas. P-i-n silicon layers were fabricated at ~ 398 K by plasma enhanced chemical vapor deposition. These textured surface ZnO:B thin films on PET substrates (PET/ZnO:B) exhibit rough pyramid-like morphology with high transparencies (T ~ 80%) and excellent electrical properties (Rs ~ 10 Ω at d ~ 1500 nm). Finally, the PET/ZnO:B thin films were applied in flexible p-i-n type silicon thin film solar cells (device structure: PET/ZnO:B/p-i-n a-Si:H/Al) with a high conversion efficiency of 6.32% (short-circuit current density JSC = 10.62 mA/cm2, open-circuit voltage VOC = 0.93 V and fill factor = 64%).  相似文献   

5.
Transparent and conductive indium tin oxide (ITO) thin films were deposited onto polyethylene terephthalate (PET) by d.c. magnetron sputtering as the front and back electrical contact for applications in flexible displays and optoelectronic devices. In addition, ITO powder was used for sputter target in order to reduce the cost and time of the film formation processes. As the sputtering power and pressure increased, the electrical conductivity of ITO films decreased. The films were increasingly dark gray colored as the sputtering power increased, resulting in the loss of transmittance of the films. When the pressure during deposition was higher, however, the optical transmittance improved at visible region of light. ITO films deposited onto PET have shown similar optical transmittance and electrical resistivity, in comparison with films onto glass substrate. High quality films with resistivity as low as 2.5 × 10− 3 Ω cm and transmittance over 80% have been obtained on to PET substrate by suitably controlling the deposition parameters.  相似文献   

6.
CdS/CdTe thin film solar cells with an area of 1 cm2 were obtained and studied in detail. A ZnO buffer layer was deposited by reactive RF-sputtering on commercial ITO substrates. The CdS layer was grown on ZnO also by using RF-sputtering and CdTe thin film was deposited by conventional CSS technique. The chlorination of the solar cells is performed into Freon atmosphere at 400 °C. The CdTe thin film surface was chemically etched by using Br-Methanol solution. The back contact was deposited using RF-sputtering from a pure Cu and Mo targets. The procedure developed in this work led us to make systematically solar cells with good efficiency. However, the series resistance has a high value for an area of 1 cm2 (22 Ω cm2). In order to make more detailed study, the solar cell with an area of 1 cm2 was divided in a 3 × 3 matrix. A good homogeneity in cell properties is observed and the efficiency increases to more than 11%, fundamentally through decreasing series resistance.  相似文献   

7.
Ga-doped ZnO (GZO) transparent conductive films have been prepared by RF plasma assisted DC magnetron sputtering under a reductive atmosphere on organic-buffer-layer (OBL) coated polyethylene telephthalate (PET) substrates without intentionally heating substrates. Electrical and optical properties, crystallinity, and environmental reliability of the GZO films have been investigated. The distributional characteristic of resistivity is observed in the GZO film deposited on the OBL-coated PET substrates. The high resistivity at facing the erosion area in the source target is reduced by providing the RF plasma and H2 gas near the substrate, resulting in a uniform distribution of the sheet resistance. It has been also found that the increase of resistivity by an accelerated aging test performed under a storage condition at 60 °C and at a relative humidity of 95% is suppressed by employing the OBL. The OBL suppresses the formation of cracks, which are induced by the aging test. These facts are thought to contribute to a high environmental reliability of GZO films on PET substrates. Values of resistivity, Hall mobility and carrier concentration are obtained: 5.0-20 × 10−3 Ω cm, 4.0 cm2/Vs, and 3.8 × 1020 cm−3, respectively. An average transmittance of the GZO film including OBL and PET substrate is 78% in a visible region. The OBL enables to realize the practical use of GZO films on PET sheets.  相似文献   

8.
The effects of power and pressure on radiofrequency (RF) diode sputtering in oblique-angle (80°) deposition arrangement are presented. Oblique-angle sputtering of ZnO:Ga (GZO) thin films resulted in a tilted columnar crystalline structure and inclination of the c-axis by an angle of approximately 9° with respect to the substrate. This improved their structural, electrical and optical properties in comparison with films deposited perpendicularly to the substrate. GZO films sputtered by an RF power of 600 W at room temperature of the substrate in Ar pressure 1.3 Pa showed strong crystalline (002) texture, lowest electrical resistivity 3.4 × 10− 3 Ωcm, highest electron mobility 10 cm2 V− 1 s− 1, high electron concentration 1.8 × 1020 cm− 3 and good optical transparency up to 88%. The small inclination angle of the film structure is caused by the high kinetic energy of sputtered species and additional energetic particle bombardment causes random surface diffusion, which is suppressing the shadow effect produced by oblique-angle sputtering.  相似文献   

9.
Highly conducting and transparent thin films of tungsten-doped ZnO (ZnO:W) were prepared on glass substrates by direct current (DC) magnetron sputtering at low temperature. The effect of film thickness on the structural, electrical and optical properties of ZnO:W films was investigated. All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The electrical resistivity first decreases with film thickness, and then increases with further increase in film thickness. The lowest resistivity achieved was 6.97 × 10−4 Ω cm for a thickness of 332 nm with a Hall mobility of 6.7 cm2 V−1 s−1 and a carrier concentration of 1.35 × 1021 cm−3. However, the average transmittance of the films does not change much with an increase in film thickness, and all the deposited films show a high transmittance of approximately 90% in the visible range.  相似文献   

10.
ZnO thin films were initially deposited on a heavily phosphorus-doped Si (n+-Si) substrate by radio frequency magnetron sputtering. The transition from n-type ZnO to p-type one was realized by phosphorus diffusing from Si substrate to ZnO film and being thermally activated during post annealing. Crystal structures of the ZnO films were confirmed to be highly c-axis oriented wurtzite structure by X-ray diffraction experiment. Photoluminescence spectra of the ZnO films showed strong ultraviolet emissions originated from the recombination of the band-edge excitons. The composition of the films was measured by X-ray photoelectron spectroscopy, and a typical concentration of phosphorus was about 0.48% corresponding to the order of atomic density of 1019/cm3. The hole concentration of the film was + 1.28 × 1019/cm3 measured by Hall effect apparatus. Formation of the p-type ZnO films can be further confirmed by the rectifying I-V curves of p-ZnO/n+-Si heterojunctions.  相似文献   

11.
An experimental method is developed for contact resistivity measurements of a buried interface in polycrystalline silicon (poly-Si) thin-film solar cell devices on aluminum doped zinc oxide (ZnO:Al) layers. The solar cell concept comprises a glass substrate covered with a temperature-stable ZnO:Al film as transparent front contact layer, a poly-Si n+/p/p+ cell, as well as a metal back contact. Glass/ZnO:Al/poly-Si/metal test stripe structures are fabricated by photolithographic techniques with the ZnO:Al stripes locally bared by laser ablation. The high-temperature treatments during poly-Si fabrication, e.g. a several hours lasting high-temperature step at 600 °C, are found to have no detrimental impact on the ZnO:Al/Si interface contact resistivity. All measured ρC values range well below 0.4 Ω cm2 corresponding to a relative power loss ΔP below 3% for a solar cell with 500 mV open circuit voltage and 30 mA/cm2 short circuit current density. By inclusion of a silicon nitride (SiNx) diffusion barrier between ZnO:Al and poly-Si the electrical material quality of the poly-Si absorber can be significantly enhanced. Even in this case, the contact resistivity remains below 0.4 Ω cm2 if the diffusion barrier has a thickness smaller than 10 nm.  相似文献   

12.
TiO2 nano-particles with an anchored ZnO nano-rod structure were synthesized using the hydrothermal method to grow ZnO nano-rods and coated TiO2 nano-particles on ZnO nano-rods using the rapid thermal annealing method on ITO conducting glass pre-coated with nano porous TiO2 film. The XRD study showed that there was little difference in crystal composition for various types of TiO2 nano-particles anchored to ZnO nano-rods. The as-prepared architecture was characterized using field-emission scanning electron microscopy (FE-SEM). Films with TiO2 nano-particles anchored to ZnO nano-rods were used as electrode materials to fabricate dye sensitized solar cells (DSSCs). The best solar energy conversion efficiency of 2.397% was obtained by modified electrode material, under AM 1.5 illumination, achieved up to Jsc = 15.382 mA/cm2, Voc = 0.479 V and fill factor = 32.8%.  相似文献   

13.
Highly doped indium-tin oxide films exhibit resistivities ρ as low as  1.2 × 10− 4 Ω cm, while for ZnO films resistivities in the range of 2 to 4 × 10− 4 Ω cm are reported. This difference is unexpected, if ionized impurity scattering would be dominant for carrier concentrations above 1020 cm− 3. By comparing the dependences of the effective Hall mobility on the carrier concentration of ZnO and ITO it is found that grain barriers limit the carrier mobility in ZnO for carrier concentrations as high as 2 × 1020 cm− 3, independently, if the films were grown on amorphous or single crystalline substrates. Depending on the deposition method, grain barrier trap densities between 1012 and 3 × 1013 cm− 2 were estimated for ZnO layers. Also, crystallographic defects seem to reduce the mobility for highly doped ZnO films. On the other hand, for ITO films such an influence of the grain barriers was not observed down to carrier concentrations of about 1018 cm− 3. Thus the grain barrier trap densities of ZnO and ITO are significantly different, which seems to be connected with the defect chemistry of the two oxides and especially with the piezoelectricity of zinc oxide.  相似文献   

14.
Akihiko Kono 《Vacuum》2008,83(3):548-551
Tin-doped indium oxide (ITO) films fabricated on glass substrates using a hot-cathode plasma sputtering method exhibited low resistivity of 9.7 × 10−5 Ω cm, which is due to a high carrier density of 2.1 × 1021 cm−3. The change in the number of carriers, N, as a function of film thickness d, strongly suggests that oxygen extraction in the initial stages of ITO film growth on the glass substrate surface, creates oxygen vacancies as an electron carrier source for improvement in the resistivity of the films.  相似文献   

15.
ZnO thin films were prepared on glass or on homo-buffer/glass by a RF magnetron sputtering method at RF power of 100-550 W. The structural and Raman characteristics of the films were analyzed by X-ray diffraction and Raman scattering. There appeared a sharp peak of 1080.2 cm−1 near the A1(2LO) mode (1156 cm−1) of ZnO in the Raman spectra when the RF power was higher than 300 W. In this case, the (100) peak of ZnO film appeared obviously. It was speculated that the Raman mode at 1080.2 cm−1 was induced by the ordered distribution of Zni defects in ZnO lattice.  相似文献   

16.
An all-solid, flexible solar textile fabricated with dye-sensitized solar cells (DSSCs) woven into a satin structure and transparent poly(ethylene terephthalate) (PET) film was demonstrated. A ZnO nanorod (NR) vertically grown from fiber-type conductive stainless steel (SS) wire was utilized as a photoelectrode, and a Pt-coated SS wire was used as a counter electrode. A graft copolymer, i.e. poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom transfer radical polymerization (ATRP) and used as a solid electrolyte. The conditions for the growth of ZnO NR and sufficient dye loading were investigated to improve cell performance. The adhesion of PET films to DSSCs resulted in physical stability improvements without cell performance loss. The solar textile with 10 × 10 wires exhibited an energy conversion efficiency of 2.57% with a short circuit current density of 20.2 mA/cm2 at 100 mW/cm2 illumination, which is the greatest account of an all-solid, ZnO-based flexible solar textile. DSSC textiles with woven structures are applicable to large-area, roll-to-roll processes.  相似文献   

17.
Fluorine-doped tin oxide (FTO), one of the most popular transparent conductive oxide (TCO) materials, coated on glass has been used in various applications including many new-generation solar cells. However, there is a lack of reporting when it comes to FTO coated on flexible transparent substrate. For this paper, spray pyrolysis technique was used to have FTO firstly coated on to a brass substrate, which was then dissolved away after cementing an upper flexible transparent polyethylene terephthalate (PET) substrate, finally leaving high quality FTO film on PET substrate. Their structural, electrical, optical and flexible properties were investigated. The lowest resistivity was 7.6 × 10− 4 Ω cm, which is as good as conventional FTO deposited on glass. Their fold ability could be significantly improved to transcend commercial ITO/PET only by increasing the pretreating time of the brass substrate.  相似文献   

18.
The epitaxial growth of ZnO thin films on Al2O3 (0001) substrates have been achieved at a low-substrate temperature of 150 °C using a dc reactive sputtering technique. The structures and crystallographic orientations of ZnO films varying thicknesses on sapphire (0001) were investigated using X-ray diffraction (XRD). We used angle-dependent X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy to examine the variation of local structure. The XRD data showed that the crystallinity of the film is improved as the film thickness increases and the strain is fully released as the film thickness reached about 800 Å. The Zn K-edge XANES spectra of the ZnO films have a strong angle-dependent spectral feature resulting from the preferred c-axis orientation. The wurtzite structure of the ZnO films was explicitly shown by the XRD and EXAFS analysis. The carrier concentration, Hall mobility and resistivity of the 800 Å-thick ZnO film were 1.84 × 1019 cm− 3, 24.62 cm2V− 1s− 1, and 1.38 × 10− 2 Ω cm, respectively.  相似文献   

19.
The optical, electrical and mechanical properties of indium tin oxide (ITO) films prepared on polyethylene terephthalate (PET) substrates by ion beam assisted deposition at room temperature were investigated. The properties of ITO films can be improved by introducing a buffer layer of silicon dioxide (SiO2) between the ITO film and the PET substrate. ITO films deposited on SiO2-coated PET have better crystallinity, lower electrical resistivity, and improved resistance stability under bending than those deposited on bare PET. The average transmittance and the resistivity of ITO films deposited on SiO2-coated PET are 85% and 0.90 × 10− 3 Ω cm, respectively, and when the films are bent, the resistance remains almost constant until a bending radius of 1 cm and it increases slowly under a given bending radius with an increase of the bending cycles. The improved resistance stability of ITO films deposited on SiO2-coated PET is mainly attributed to the perfect adhesion of ITO films induced by the SiO2 buffer layer.  相似文献   

20.
I.V. Rogozin 《Thin solid films》2009,517(15):4318-4321
We investigate the p-type doping in ZnO prepared by the method of radical beam gettering epitaxy using NO gas as the oxygen source and nitrogen dopant. Secondary ion mass spectroscopy measurements demonstrate that N is incorporated into ZnO film in concentration of about 8 × 1018 cm− 3. The hole concentration of the N-doped p-type ZnO films was between 1.4 × 1017 and 7.2 × 1017 cm− 3, and the hole mobility was 0.9-1.2 cm2/Vs as demonstrated by Hall effect measurements. The emission peak of 3.312 eV is observed in the photoluminescence spectra at 4.2  of N-doped p-type ZnO films, probably neutral acceptor bound. The activation energy of the nitrogen acceptor was obtained by temperature-dependent Hall-effect measurement and equals about 145 meV. The p-n heterojunctions ZnO/ZnSe were grown on n-type ZnSe substrate and have a turn-on voltage of about 3.5 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号