首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this paper, the NiSi2/SiNX compound NCs (CNCs) structure is studied to further improve the retention. To introduce the nitride based traps, NiSi2 was also sputtered in the mixture gas of Ar (50 sccm) and NH3 (10 sccm) at room temperature, and the NiSi2/SiNX CNCs can be easily formed after rapid thermal annealing. In addition, standard memory devices with single and double NiSi2 nanocrystal were also prepared for comparison. By XPS analyses, the nanocrystals fabricated in the ambiance of NH3 can be confirmed to be composited of NiSi2 and SiNX compound. According to memory characteristics results, better retention characteristic of device with single-layer NiSi2/SiNX compound nanocrystal NVMs can be observed after 104 s, raises from 50% to 72% in comparison with the control sample, even better than the double-layer NiSi2 nanocrystal, 58%. Indeed, the formation of NiSi2/SiNX CNCs can improve the retention characteristics remarkably due to the additional tunnel barrier and deep traps in the nitride.  相似文献   

2.
Pt/CoOx/Pt tri-layers exhibited reproducible and stable unipolar switching under a dc sweeping voltage. In order to investigate the role of oxygen reduction in the metal-deficient CoOx layer, resistive switching of the post-annealed CoOx thin film was compared with those of the as-deposited CoOx thin film. X-ray photoemission spectroscopy showed larger reproducible resistance switching and decreasing of current level in the post-annealed CoOx thin film. This may be explained by a reduction in oxygen stoichiometry without phase transformation of the CoOx. In addition, stable switching in post-annealed CoOx layer is considered to originate from the decrease of the Co vacancies in local Co3O4 region partially distributed in the whole CoOx layer, not in the dominant CoO.  相似文献   

3.
In this article, we report the forming-free resistive switching behavior of a Ru/Dy2O3/TaN memory device incorporating a Dy2O3 thin film fabricated entirely through processing at room temperature. We used X-ray diffraction, secondary ion mass spectrometry, and X-ray photoelectron spectroscopy to investigate the structural and chemical features of the Dy2O3 film. The dominant conduction mechanisms in the low- and high-resistance states were ohmic behavior and Poole-Frenkel emission, respectively. The Ru/Dy2O3/TaN memory device exhibited a high resistance ratio and provided nondestructive readout and reliable data retention. This memory device has a great potential for application in nonvolatile resistive switching memory.  相似文献   

4.
Resistive random access memory (ReRAM) properties in which the resistance of the insulating material drastically changes by voltage application have recently attracted much attention. In this work, molybdenum oxide prepared by thermal oxidation of Mo films was studied to investigate its potential as a material exhibiting ReRAM switching. The samples oxidized between 400 and 600 °C were composed of MoO3 and were switchable. Current-to-voltage curves, which were measured in air at room temperature by using a Pt-Ir probe as the top electrode, indicated the yielding of both the monopolar and bipolar switching properties. The resistance on-off ratio was between 10 and 102.  相似文献   

5.
This paper deals with the impact of the top metal electrode on the resistive switching properties of HfO2-based Metal-Insulator-Metal diodes. By screening five different metals as top electrode, Al-Cu-Hf-Pt-Ti, we have demonstrated the feasibility of the resistive switching effect on HfO2. Metals with a low enthalpy of formation of oxides ΔHf0 (Pt and Cu) lead to uni-polar switching whereas easily oxidizable metals with a higher ΔHf0 (Al, Hf and Ti) lead to bipolar switching. Cu-, Hf- and Pt-based devices show a degradation of the top electrode after the forming step by the formation of bubbles whereas such phenomenon was not observed in Al- and Ti-based devices. 200 switching cycles were performed on each device in order to extract the main parameters of the resistive switching effect: ION and IOFF currents in the mA range, ROFF/RON resistance ratio up to 5, Vset and Vreset, voltage levels around 1 V, and powers dissipated during read and write operations in the μW and mW range, respectively. For all systems, the reset process dissipates higher power than the set process. From these results, the Ti top adlayer shows the best performance in terms of stability and resistive switching characteristics.  相似文献   

6.
All oxide solid state ITO (indium tin oxide)/LiyWO3−x/Li1−zMn2O4/ITO stacked structure was deposited on a silica glass substrate by pulsed laser deposition for its electrochromic application. The Li doped amorphous tungsten trioxide LiyWO3−x thin film prepared at room temperature and in oxygen pressure of 7 Pa got the color of blue due to the mixture valence state of tungsten. We found that the amorphous Li1−zMn2O4 thin film was suitable for the electrochromic application in spite of the low ion conductivity along in-plane direction. The ITO electrode thin film deposited at room temperature showed the relatively high transmittance and the usable conductivity. The transmittance at a wavelength of 750 nm for the ITO/LiyWO3−x/Li1−zMn2O4/ITO stacked film changed from 50% to 80% by the applied voltage, while the transmittance at around 450 nm did not change. The blue-colored electrochromic property could be observed for the all oxide solid state film.  相似文献   

7.
The electrical characteristics of nonvolatile memory, which consists of an asymmetrical ZrO2/SiO2 (ZO) modified tunnel barrier, a high-k HfO2 trapping layer and an Al2O3 blocking layer, were investigated for the application of a tunnel barrier engineered nonvolatile memory at low process temperatures. The efficiency of the ZO modified tunnel barrier on the charge trap flash (CTF) memory cell was compared to a conventional single SiO2 tunnel barrier. The ZO tunnel barrier revealed field sensitivity larger than the single SiO2 tunnel barrier. The programming and erasing speeds as well as the retention and endurance characteristics of CTF memory were largely enhanced. Moreover, the forming gas annealing process in 2% diluted H2/N2 ambient improved the charging trapping property and tunneling sensitivity of the ZO modified tunnel barrier.  相似文献   

8.
A novel design of gas sensor using low temperature cofired ceramics (LTCC) and thin film technologies is presented. The LTCC structure is composed essentially of two ceramic layers with interlayer thick film Pt heater, interdigitated electrodes on top, contact pads and metallic connections realised by vias. The thin films of both SnO2 and In2O3, intentionally doped and activated, were deposited on top of the structure. With some modifications of the lamination process and heat treatment parameters, the authors obtained the upper ceramic layer with the roughness not exceeding 250 nm, what was suitable for thin film technology. The films deposited onto such LTCC structure revealed the sensing properties very similar to the reference films deposited onto glass. The gas-sensitive films were tested with changing concentrations of reducing and oxidising gases in air. The necessary sensor working temperature was obtained and stabilised using a custom-built digital controller. The low heat capacity of the sensor structure enabled also a sinusoidal temperature control. The satisfactory results obtained by the authors indicate that the connection of LTCC and thin film technologies can lead to the fabrication of good quality gas sensors.  相似文献   

9.
Ö. Faruk Yüksel  S.B. Ocak 《Vacuum》2008,82(11):1183-1186
High frequency characteristics of tin oxide (SnO2) thin films were studied. SnO2 thin films have been successfully grown on n-type Si (111) substrates by using a spray deposition technique. The capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics of the metal-oxide-semiconductor (Au/SnO2/n-Si) Schottky diodes were investigated in the high frequency range from 300 kHz to 5 MHz. It has been shown that the interface state density, Dit, ranges from 2.44 × 1013 cm−2 eV−1 at 300 kHz to 0.57 × 1013 cm−2 eV−1 at 5 MHz and exponentially decreases with increasing frequency. The C-V and G/ω-V characteristics confirm that the interface state density and series resistance of the diode are important parameters that strongly influence the electrical parameters exhibited by the metal-oxide-semiconductor structure.  相似文献   

10.
A transparent resistive random access memory used as Indium Tin Oxide (ITO) electrode, ITO/HfO2/Al2O3/…/HfO2/Al2O3/ITO capacitor structure is fabricated on glass substrate by atomic layer deposition. The unipolar resistive switching characteristics can be performed by applying the positive- or negative-bias through top electrode, however, the differences of switching and stability in the two different operations can be observed. The diversities of electrical property are attributed to different oxide/ITO interface materials, which influence the current flow of the injected electrons.  相似文献   

11.
Xue-Yang 《Thin solid films》2010,518(22):6441-6445
In this study, the etching characteristics of ALD deposited Al2O3 thin film in a BCl3/N2 plasma were investigated. The experiments were performed by comparing the etch rates and the selectivity of Al2O3 over SiO2 as functions of the input plasma parameters, such as the gas mixing ratio, the DC-bias voltage, the RF power, and the process pressure. The maximum etch rate was obtained at 155.8 nm/min under a 15 mTorr process pressure, 700 W of RF power, and a BCl3 (6 sccm)/N2 (14 sccm) plasma. The highest etch selectivity was 1.9. We used X-ray photoelectron spectroscopy (XPS) to investigate the chemical reactions on the etched surface. Auger electron spectroscopy (AES) was used for the elemental analysis of the etched surfaces.  相似文献   

12.
Unipolar resistive switching behavior has been investigated in Pt/Co3O4/Pt stacks. The resistance ratio of the high- and low- resistance states is over 5 × 103. The “ON/OFF” operation of the memory cells can be repeated more than 200 times at room temperature. The resistance of the two states can be kept for more than 16 h without showing degradation. The temperature dependence of the resistance shows a metallic behavior at the low-resistance state, but a semiconductor-behavior at the high-resistance state. The mechanism responsible for the observed unipolar resistive switching behavior has been discussed.  相似文献   

13.
Hee-Wook You 《Thin solid films》2010,518(22):6460-7485
The electrical characteristics of tunnel barrier engineered charge trap flash (TBE-CTF) memory of MAHONOS (Metal/Al2O3/HfO2/SiO2/Si3N4/SiO2/Si) structure were investigated. The stack of SiO2/Si3N4/SiO2 films were used as engineered tunnel barrier, HfO2 and Al2O3 films were used as charge trap layer and blocking oxide layer, respectively. For comparison, the electrical characteristics of MONOS (Metal/SiO2/Si3N4/SiO2/Si), MONONOS (Metal/SiO2/Si3N4/SiO2/Si3N4/SiO2/Si), and MAHOS (Metal/Al2O3/HfO2/SiO2/Si) were also evaluated. The energy band diagram was designed by using the quantum-mechanical tunnel model (QM) and then the CTF memory devices were fabricated. As a result, the optimized thickness combination of MAHONOS structure was confirmed. The tunnel barrier engineered MAHONOS CTF memory showed a considerable enhancement of program/erase (P/E) speeds, retention time and endurance characteristics.  相似文献   

14.
Transparent conducting Nb-doped anatase TiO2 (TNO) epitaxial films were sputtered from TiO2-, Ti2O3-, and Ti-based targets at various oxygen partial pressures (Po2). Using the TiO2- and Ti2O3-based targets, highly conductive films showing a resistivity (ρ) of ~ 3 × 10− 4 Ω cm could be formed without postdeposition treatment. In the case of the TNO films formed from the Ti-based target, reductive annealing had to be carried out at a temperature of 600 °C to achieve similar resistivity values. Thus, the use of oxide targets is preferable to obtain as-grown transparent conducting TNO films. In particular, the Ti2O3-based target is practically advantageous, because it offers a wide range of optimal Po2 values at which ρ values of the order of 10− 4 Ω cm are achievable.  相似文献   

15.
We have synthesized gallium oxide (Ga2O3) nanobelts by heating GaN powders in the conventional furnace. The nanobelts exhibited a unique bicrystalline structure that consisted of two single-crystalline monoclinic Ga2O3 nanobelts, which split along the twin boundary that exists at the centerline. Energy dispersive X-ray spectroscopy and electron energy loss spectroscopy spectra coincidentally indicated the presence of nitrogen in the Ga2O3 nanobelts. Photoluminescence spectra exhibited the visible light emission. We discussed the possible emission mechanisms, including the effect of the nitrogen dopant.  相似文献   

16.
In order to develop a colored mirror with hydrophilicity, TiO2 films are deposited on the Cr and amorphous-TiO2 substrate. In TiO2/Cr, a mixed phase comprising of anatase and rutile is formed. In TiO2/amorphous-TiO2/Cr, pure anatase phase is obtained. The amorphous-TiO2 film as interlayer tends to induce micro-columnar-shaped anatase phase. The formation of anatase phase leads to an abrupt decrease of the contact angle by UV-irradiation. Hydrophilic to hydrophobic reconversion by electron-hole recombination is retarded, which seems to be due to pure anatase phase without rutile phase.  相似文献   

17.
In this work, Y2O3 was evaluated as a gate insulator for thin film transistors fabricated using an amorphous InGaZnO4 (a-IGZO) active layer. The properties of Y2O3 were examined as a function of various processing parameters including plasma power, chamber gas conditions, and working pressure. The leakage current density for the Y2O3 film prepared under the optimum conditions was observed to be ~ 3.5 × 10− 9 A/cm2 at an electric field of 1 MV/cm. The RMS roughness of the Y2O3 film was improved from 1.6 nm to 0.8 nm by employing an ALD (Atomic Layer Deposition) HfO2 underlayer. Using the optimized Y2O3 deposition conditions, thin film transistors (TFTs) were fabricated on a glass substrate. The important TFT device parameters of the on/off current ratio, sub-threshold swing, threshold voltage, and electric field mobility were measured to be 7.0 × 107, 0.18 V/dec, 1.1 V, and 3.3 cm2/Vs, respectively. The stacked insulator consisting of Y2O3/HfO2 was highly effective in enhancing the device properties.  相似文献   

18.
Amorphous transparent conductive oxide films in the In-Zn-O system were deposited on polycarbonate (PC) substrates by simultaneous DC sputtering of an In2O3 target and a ZnO target with either 4 wt% Al2O3 or 7.5 wt% Ga2O3 impurities. Although the resistivity of the amorphous, non-doped In-Zn-O film on PC was about one order of magnitude higher than that on the glass substrate, the resistivity of the In-Zn-O films with Ga2O3 impurities on PC substrates was reduced to the level of the non-doped In-Zn-O films on glass substrates. The addition of Al2O3 or Ga2O3 to the In-Zn-O films also induced the widening of the optical band gap, which would improve transparency at blue wavelengths.  相似文献   

19.
Single-crystalline β-Ga2O3 nanobelts were synthesized by a simple physical evaporation method in argon atmosphere with the starting materials of Ga. The β-Ga2O3 nanobelts have a width of 50-100 nm and width-to-thickness ratios of 5-10, and length of up to a few millimeters, which may have potential applications in nanosize sensors or optoelectronic nanodevices.  相似文献   

20.
Formation and composition analyses of titanium oxinitride nanocrystals (NCs) fabricated via treating a magnetron co-sputtered thin film of titanium and silicon dioxide with a rapid thermal annealing in nitrogen ambient were demonstrated for nonvolatile memory applications. Phase separation characteristics with different annealing conditions were examined by transmission electron microscopy and chemical bonding characteristics were confirmed by X-ray photon emission spectra. It was observed that a blanket layer composed mainly of titanium oxide was still present as annealing temperature was increased to 700 °C, associated with the thermodynamically stable phase of titanium oxide. Furthermore, a higher thermal treatment of 900 °C induced formation of a well-separated NC structure and caused simultaneously partial nitridation of the titanium oxide, thereby forming titanium oxinitride NCs. A significant capacitance-voltage hysteresis in threshold voltage shift at 1 V was easily achieved under a small sweeping voltage range of + 2 V/−2 V, and a memory window retention of 2.2 V was obtained after 107 s by extrapolation under a 1 s initial-program/erase condition of + 5 V/−5 V, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号