首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reem AL-Wafi 《SILICON》2017,9(5):657-661
We have fabricated an Al/n-Si/Bi4Ti3O12/Au photodiode by the sol-gel method. The photoelectrical response of the diode was measured under dark and various light intensity conditions. The photocurrent of the diode increases with increase in light intensity. The light sensitivity value of the photosensor was measured and observed to increase from 5.06 × 10?8 (under dark) to 2.34 × 10?4 A (under 100 mW/cm2). Furthermore, other parameters for instance, ideality factor and barrier height of the photosensors were calculated. The ideality factor and barrier height of the Al/n-Si/Bi4Ti3O12/Au photosensor were found to be 3.01 and 0.86 eV respectively. Also capacitance-voltage (C-V) characteristics were measured. The C-V graph indicates changeable behavior with the varying frequency. The value of capacitance and the interface state density Dit value decrease with increase in frequency. Thus, the obtained results indicate that the Al/n-Si/Bi4Ti3O12/Au photosensor can be used as a photosensor in optoelectronic applications.  相似文献   

2.
In the current investigation a series of oxygen-rich bismuth oxychloride Bi12O17Cl2 samples through an ethylene glycol-solvothermal route were constructed at different calcination temperatures and fully characterized by X-ray diffraction patterns, scanning electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, UV–Vis diffuse reflectance spectra, X-ray energy dispersion spectroscopy, and photoluminescence spectra. It was demonstrated that the calcination temperatures indeed had a crucial effect on the crystallinity, grain size, morphology, optical property, and charge carrier separation of Bi12O17Cl2 series. These Bi12O17Cl2 samples showed significantly improved photocatalytic degradation over dye Rhodamine B and colorless antibiotic tetracycline hydrochloride. Particularly, the best candidate, the sample 350 °C—Bi12O17Cl2 could show apparent reaction rate constants that were nearly 28.2, 1.2 times of N–TiO2 over Rhodamine B and tetracycline hydrochloride, respectively. The possible reason of enhancing photocatalytic performance by various Bi12O17Cl2 samples calcined at different temperatures was discussed and major oxidative radicals maybe generated during photocatalytic processes were detected.  相似文献   

3.
The Sb2O3 doping lead-free glass in Bi2O3-B2O3-BaO ternary system were prepared in the composition of several different subsystem, and the glass powder was produced through the process of water quenching. Glass transition temperatures (T g ), glass soften temperatures(T s ), the volume resistivity (ρ) in the temperature range of 80–200°C, and linear thermal coefficients of expansion in the temperatures range of 25–300°C (α25–300) were measured for subsystems along with the different ratio of Bi2O3, B2O3 and BaO. For these subsystems, T g ranged from 458 to 481°C, and T s ranged from 490 to 512°C, both decreasing with the increasing of Bi2O3/B2O3 ratio, and increasing with the increasing of BaO/B2O3 ratio. The measured α25–300 ranged from 65.3 to 76.3 × 10−7 K−1, with values increasing with increasing Bi2O3/B2O3 and BaO/B2O3 ratio. The volume resistivity remains at a high standards, which may caused by it’s non-alkali composition, and it fluctuated from 1013 to 1011 Ω cm with the temperature varied from 80–200°C. The structure of Bi2O3-B2O3-BaO ternary leadfree glass system was mearsured by FT-IR. The IR studies indicate that these glasses are made up of [BiO6], [BO3], and [BO4] basic structural units, and it appears that Ba2+ acts as a glass-modifier in this ternary system, but the Bi3+ has entered the glass network when it is in relative high content so as to change the α25–300, T s and T g .  相似文献   

4.
Oxidative dehydrogenation of n-butene to 1,3-butadiene over Co9Fe3Bi1Mo12O51 catalyst was conducted in a continuous flow fixed-bed reactor. The effect of reaction conditions (steam/n-butene ratio, reaction temperature, and space velocity) on the catalytic performance of Co9Fe3Bi1Mo12O51 was investigated. Steam played an important role in decreasing contact time, suppressing total oxidation of n-butene, and removing coke during the reaction. Yield for 1,3-butadiene showed a volcano-shaped curve with respect to steam/n-butene ratio. The compensation between thermodynamic effect and kinetic effect led to a volcano-shaped curve of 1,3-butadiene yield with respect to reaction temperature. The Co9Fe3Bi1Mo12O51 catalyst showed the best catalytic performance at a certain value of space velocity. The optimum steam/n-butene ratio, reaction temperature, and gas hourly space velocity were found to be 15, 420 °C, and 675 h−1, respectively.  相似文献   

5.
Layered ceramics based on bismuth–calcium cobaltite with varied cobalt oxide contents is synthesized by the solid-phase method, the ceramics phase composition is determined, and the microstructure, thermal expansion, electroconductivity, and thermal electromotive force are investigated. The formation of just one compound, ternary oxide composed of Bi2Ca2Co1.7O y , is established within the quasi-binary Bi2Ca2O5–CoO z system. The effect of the cobalt oxide content on the Bi2Ca2Co x O y ceramics’ microstructure and physicochemical properties is analyzed. The single-phased ceramic sample Bi2Ca2Co1.7O y demonstrated the highest power factor value among all the investigated samples—26.0 μW/(m K2) at a temperature of 300 K. This sample showed the lowest value of the thermal linear expansion coefficient of 9.72 × 10–6 K–1.  相似文献   

6.
A solvothermal method has been employed to synthesize bismuth sulfide (Bi2S3) with three-dimensional (3D) hierarchical architectures. The influences of different types of surfactants and Cl? species on the size and morphology were investigated. A possible formation mechanism was also proposed on the basis of time-dependent experiments. The photoresponse properties show that the conductivity of Bi2S3 micro-flowers is significantly enhanced and the photocurrent is approximately two orders of magnitude larger than the dark current. The response and decay times are estimated to be 142 and 151 ms, respectively. It is expected that hierarchical architectures Bi2S3 may provide a new pathway to develop advanced nanomaterial for high-speed and high-sensitivity photoelectrical switches and photodetecting devices.  相似文献   

7.
Nanometer-sized bismuth tungsten oxides, Bi2WO6s, were successfully synthesized by hydrothermal treatment at 200 °C for 24 hr, and their morphologies and crystallite sizes were influenced by adjusting the conditions to pH 4, 7, and 9. TEM images revealed that the particles were sheet-shaped and the crystallite sizes ranged from 7–120 nm. The samples absorbed in the visible range at about 380–400 nm. The lowest conductivity, 1.0×106 ohm/square, was observed for Bi2WO6 prepared at pH 4 with a 150 nm film thickness. As the annealing temperature for Bi2WO6 prepared at pH 7 was increased, the conductivity decreased due of formation of larger particles by coagulation and sintering at high temperatures. Conductivity appears to improve with increasing film thickness up to 1,500 nm.  相似文献   

8.
Bi2MoO6 nanomaterials are synthesized by a facile solvothermal method. Morphology and structure of the Bi2MoO6 nanomaterials are analyzed by SEM, XRD, N2 adsorption techniques and XPS. Gas-sensing properties of the as-prepared Bi2MoO6 sensors are also systematically investigated. The results show the Bi2MoO6 nanomaterials consist of nanosheets and demonstrate good crystallinity. The optimal operating temperature of the Bi2MoO6 sensors is 240 °C. At this operating temperature, The Bi2MoO6 sensor exhibits a fast response-recovery to ethanol, suggesting its excellent potential application as a gas sensor for ethanol gas-sensing applications.  相似文献   

9.
Nano-sized bismuth sulfide (Bi2S3) and titanium dioxide (TiO2) with the orthorhombic and anatase tetragonal structures, respectively, were synthesized for application as catalysts for the reduction of carbon dioxide (CO2) to methane (CH4). Four double-layered dense films were fabricated with different coating sequences—TiO2 (bottom layer)/Bi2S3 (top layer), Bi2S3/TiO2, TiO2/Bi2S3: TiO2 (1 : 1) mix, and Bi2S3: TiO2 (1 : 1) mix/Bi2S3: TiO2 (1 : 1) mix—and applied to the photoreduction of CO2 to CH4; the catalytic activity of the fabricated films was compared to that of the pure TiO2/TiO2 and Bi2S3/Bi2S3 doubled-layered films. The TiO2/Bi2S3 double-layered film exhibited superior photocatalytic behavior, and higher CH4 production was obtained with the TiO2/Bi2S3 double-layered film than with the other films. A model of the mechanism underlying the enhanced photoactivity of the TiO2/Bi2S3 double-layered film was proposed, and it was attributed in effective charge separation.  相似文献   

10.
The phase composition and structure of fusion-cast refractories composed of 57.0 – 84.2% Cr2O3, 4.3 – 36.1% MgO, 2.0 – 9.7% Al2O3, and 2.4 – 6.9% SiO2 have been studied by petrographic and x-ray spectral microprobe analysis methods. Refractories high in MgO with modulus M = (Cr2O3 +Al2O3)/MgO = 1.64 – 3.1 are shown to consist of spinel phase Mg(Cr, Al)2O4 and silicate glass. Refractory materials (80.8 – 84.2% Cr2O3, 4.3 – 4.7% MgO, 2.0 – 9.7% Al2O3, and 2.7 – 6.9% SiO2 with M = 18.7 – 20.2) are three-phase systems composed of spinel, escolaite, and glass phase. These materials, owing to their high corrosion resistance, have promising potentiality for practical applications.__________Translated from Novye Ogneupory, No. 12, pp. 69 – 74, December, 2004.  相似文献   

11.
Spherical LiNi1/2Mn1/2O 2 powders were synthesized from LiOH . H2O and coprecipitated metal hydroxide, (Ni1/2Mn1/2)(OH)2. The average particle size of the powders was about 10 m and the size distribution was quite narrow due to the homogeneity of the metal hydroxide, (Ni1/2Mn1/2)(OH)2. The tap-density of the LiNi1/2Mn1/2O2 powders was approximately 2.2 g cm–3, which is comparable to the tap-density of commercial LiCoO2. The LiNi1/2Mn1/2 O2electrode delivered a discharge capacity of 152, 163, 183, and 189 mA h g–1 in the voltage ranges of 2.8–4.3, 2.8–4.4, 2.8–4.5, and 2.8–4.6 V, respectively, with good cyclability. Furthermore, Al(OH)3-coated LiNi1/2Mn1/2O2exhibited excellent cycling behavior and rate capability compared to the pristine electrode.  相似文献   

12.
Bi3Mo2Fe1P x oxide catalysts were prepared by a co-precipitation method and the influence of phosphorous content on the catalytic performance in the oxidative dehydrogenation of 1-butene was investigated. The addition of phosphorous up to 0.4mole ratio to Bi3Mo2Fe1 oxide catalyst led to an increase in the catalytic performance; however, a higher phosphorous content (above P=0.4) led to a decrease of conversion. Of the tested catalysts, Bi3Mo2Fe1P0.4 oxide catalyst exhibited the highest catalytic performance. Characterization results showed that the catalytic performance was related to the quantity of a π-allylic intermediate, facile desorption behavior of adsorbed intermediates and ability for re-oxidation of catalysts.  相似文献   

13.
In this paper the dielectric properties of crack‐free, Bi12SiO20 thin films were investigated. The films were prepared on Pt/TiO2/SiO2/Si and corundum substrates using the sol–gel method. The formation of a pure Bi12SiO20 phase was observed at a temperature of 700°C. The Bi12SiO20 thin films, heat treated at 700°C for 1 h, had a dense microstructure with an average roughness (Ra) of 50 nm. The dielectric properties of the film were characterized by using both low‐ and microwave‐frequency measurement techniques. The low‐frequency measurements were conducted with a parallel capacitor configuration. The dielectric constant and dielectric losses were 44 and 7.5 × 10?3, respectively. The thin‐film dielectric properties at the microwave frequency were measured using the split‐post, dielectric resonator method (15 GHz) and the planar capacitor configuration (1–5 GHz). The dielectric constant and the dielectric losses measured at 15 GHz were 40 and 17 × 10?3, respectively, while the dielectric constant and the dielectric losses measured with the planar capacitor configuration were 39 and 65 × 10?3, respectively.  相似文献   

14.
Spinel Li4Mn5O12 was prepared by a sol–gel method. The manganese oxide and activated carbon composite (MnO2-AC) were prepared by a method in which KMnO4 was reduced by activated carbon (AC). The products were characterized by XRD and FTIR. The hybrid supercapacitor was fabricated with Li4Mn5O12 and MnO2-AC, which were used as materials of the two electrodes. The pseudocapacitance performance of the Li4Mn5O12/MnO2-AC hybrid supercapacitor was studied in various aqueous electrolytes. Electrochemical properties of the Li4Mn5O12/MnO2-AC hybrid supercapacitor were studied by using cyclic voltammetry, electrochemical impedance measurement, and galvanostatic charge/discharge tests. The results show that the hybrid supercapacitor has electrochemical capacitance performance. The charge/discharge test showed that the specific capacitance of 51.3 F g−1 was obtained within potential range of 0–1.3 V at a charge/discharge current density of 100 mA g−1 in 1 mol L−1 Li2SO4 solution. The charge/discharge mechanism of Li4Mn5O12 and MnO2-AC was discussed.  相似文献   

15.
The results of a study of the thermophysical properties (thermal diffusivity, heat capacity, heat conductivity, and coefficient of linear thermal expansion) of Si3N4 - BN hot-pressed composite (with BN concentration varying from 10 to 60 wt.%) in the temperature range of 20 – 900°C are reported.__________Translated from Novye Ogneupory, No. 10, pp. 47 – 49, October, 2004.  相似文献   

16.
The selective oxidation of hydrogen sulfide containing excess water and ammonia was studied over vanadium oxide-based catalysts. The investigation was focused on the role of V2O5, and phase cooperation between V2O5 and Bi2O3 in this reaction. The conversion of H2S continued to decrease since V2O5 was gradually reduced by treatment with H2S. The activity of V2O5 was recovered by contact with oxygen. A strong synergistic phenomenon in catalytic activity was observed for the mechanically mixed catalysts of V2O5 and Bi2O3. Temperature-programmed reduction (TPR) and oxidation (TPO) and two bed reaction tests were performed to explain this synergistic effect by the reoxidation ability of Bi2O3. This paper is dedicated to Professor Wha Young Lee on the occasion of his retirement from Seoul National University.  相似文献   

17.
The xPbTe/Yb0.2Co4Sb12 compounds were prepared by the ball-milling and hot-pressed process. Electrical conductivity of the composite samples are reduced with a increase in PbTe content; and, their temperature dependence coefficients show the positive values. The maximum electrical conductivity of composite materials is ~80000 Sm−1 at 800 K. The Seebeck coefficient (absolute value) of the composite material is obviously improved with an increase in the dispersed phase (PbTe) content; the Seebeck coefficient (absolute value) of the 10PbTe sample is ~260 μVK−1 at 700 K, which increases by 13.6% relative to that of the Yb0.2Co4Sb12 sample. The thermal conductivity of the composite samples is improved due to introduction of PbTe, and the thermal conductivity of the 10PbTe sample is ~3 Wm−1 K−1 at 550 K. The maximum value of ZT is 0.78 at 700 K for the 2.5PbTe sample.  相似文献   

18.
The crystal structure of Pb6O[(Si6Al2)O20)] is investigated using X-ray diffraction. The compound has tetragonal symmetry, space group I4/mmm, a = 11.7162(10) Å, c = 8.0435(12) Å, and V = 1104.13(2) Å3. The structure is refined to R 1 = 0.036 for 562 unique reflections with [F 0] ≥ 4σF. The structure contains two symmetrically independent positions of the Pb2+ cations coordinated by five O atoms (Pb2+-O2? = 2.34–2.68 Å). The TO4 tetrahedra (T = Si, Al) form tubular [(Si6Al2)O20] chains extended along the c axis. The O4 oxygen atom is not bonded to the Si and Al atoms and is octahedrally coordinated by six Pb atoms with the formation of an oxo-centered OPb6 octahedron. The assumption is made that, in some of lead silicate and aluminosilicate glasses, a number of oxygen atoms are located outside the tetrahedral structure and represent segregation centers of the Pb2+ cations due to the formation of oxo-centered complexes.  相似文献   

19.
A layered LiNi0.8Co0.2O2 solid solution, which is a promising cathode material for secondary lithium batteries, was successfully synthesized by an emulsion drying method. Because electrochemical properties significantly depend on the conditions of the synthesis, the calcination temperature was carefully determined on the basis of X-ray diffraction and TG studies. The prepared cathodes were characterized by means of SEM, BET, X-ray diffraction, Rietveld refinement, cyclic voltammetry and a charge-discharge experiment. From the Rietveld analysis, it was found that powder calcined at 800 °C for 12 h exhibits a well ordered and lower cation mixed layered structure than the others. The cyclic voltammetry experiment shows that phase transformation can be suppressed considerably by increasing the calcination temperature to 800 °C. The highest discharge capacity of 188.4 mA h g−1 was obtained from the sample prepared at 800 °C. Furthermore, a high capacity retention ratio of 88.1% was found for the initial value after 50 cycles at a constant current density of 40 mA g−1 between 2.7 VLi/Li+ and 4.3 VLi/Li+. In the rate capability test, the cathode delivered a higher discharge capacity of 153.1 mA h g−1 at a 4 C (800 mA g−1) rate.  相似文献   

20.
The thermal properties of compounds of the general formula Bi m + 1 Fe m ? 3 Ti3O3m + 3, which are layered perovskite-like phases of the Aurivillius type, are investigated as a function of their composition. It is demonstrated that the temperature of decomposition of the Bi m + 1 Fe m ? 3 Ti3O3m + 3 compounds decreases with an increase in the thickness of perovskite-like layers alternating in the structure and that the composition dependence of the temperature of the structural transition observed in these compounds exhibits a more complex behavior. The linear thermal expansion coefficients of all the compounds under investigation are found to be virtually independent of the composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号