首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
To further investigate the association between Parkinson's disease (PD) and genetic polymorphism of the CYP2D6 gene, a mutant allele (CVP2D6J) frequently observed in the Japanese population and related to EM/PM polymorphism (phenotypically, individuals are either extensive metabolizers [EM] or poor metabolizers [PM] of debrisoquine) was investigated. The CYP2D6J gene with a nucleotide substitution from C to T at position 188 (the HphI site in exon 1), which reduces CYP2D6 enzyme activity, was analyzed by polymerase chain reaction (PCR) and by digestion with HphI. No significant relationship was observed between PD patients and controls for this mutation. This suggests that the EM/PM polymorphism of CYP2D6 contributes little to the pathogenesis of PD. To further study the molecular basis for the relationship between PD and CYP2D6, the heterogeneity of CYP2D6 was investigated by combined genotype analysis of the two mutant CYP2D6 genes (ie, CYP2D6J, the HphI site mutation in exon 1, and CYP2D6L, the HhaI site mutation in exon 6). Although some characteristic patterns of the combined genotypes were observed in both PD patients and controls, a strong association between the heterogeneity of the CYP2D6 gene and PD was not shown by combined genotype analysis.  相似文献   

2.
The enzyme debrisoquine 4-hydroxylase (CYP2D6), which metabolizes many widely used drugs, is highly polymorphic. The activity of the enzyme ranges between subjects from ultrafast to a complete absence. Therefore, metabolic capacity varies, producing intersubject differences in therapeutic efficacy and side effects at standard recommended doses. Up to 7% of Caucasians may demonstrate ultrarapid drug metabolism (UM) because of inherited alleles with multiplicate functional CYP2D6 genes, causing an increased amount of enzyme to be expressed. Identification of UM subjects is of potential clinical importance for adjustment of doses in drug therapy, as well as to avoid misidentification of noncompliance. In our study, we tested recently designed PCR assays for the detection of the UM genotype. We found a 3.5% prevalence of UMs carrying duplicate active CYP2D6 genes in a population consisting of 202 psychiatric patients.  相似文献   

3.
The well described genetic polymorphism of the CYP2D6 gene influences response to a wide variety of therapeutic agents metabolized by the CYP2D6 enzyme product. CYP2D6 also appears to play a role, along with other cytochrome P450 enzymes, in the metabolic activation of the tobacco specific nitrosamine, NNK, as well as metabolism of nicotine to cotinine. While impaired activity of CYP2D6 was strongly protective against lung cancer in some studies, primarily based on phenotyping, the literature is conflicting. The molecular basis of CYP2D6 deficiency is now well understood, enabling the use of genotyping to classify individuals. We therefore examined whether lung cancer risk is reduced by the presence of four CYP2D6 alleles associated with impaired activity due to an inactivating mutation--CYP2D6*4, CYP2D6*3, CYP2D6*5 and CYP2D6*16--among 341 incident cases of lung cancer and 710 population controls of Caucasian or African-American ethnicity in Los Angeles County, California. We did not confirm a strong association between the presence of these inactivating alleles and lung cancer risk [odds ratio (OR) = 0.90, 95% confidence interval (CI) 0.60-1.35 for Caucasians], although there was a small decreased risk among the African-Americans (OR = 0.66, 95% CI 0.38-1.14). Among smokers, when the data are stratified according to lifetime smoking history, there is a suggestion of an association limited to Caucasian smokers of <35 pack-years, the median for all smokers in these data (OR = 0.49, 95% CI 0.23-1.04). However, among African-American smokers, who smoke less than Caucasians, the association did not differ between smoking categories. We also examined the possible role of additional copies of the CYP2D6 gene, which lead to enhanced CYP2D6 activity, in increasing lung cancer risk. Among controls the prevalence of having more than two copies of the CYP2D6 gene and no inactivating alleles was 4.3% for Caucasians and 4.9% for African-Americans. Relative to subjects with an inactivating allele, those with an additional copy of the CYP2D6 gene and no inactivating alleles may be at increased risk of lung cancer, particularly for adenocarcinoma (OR = 3.61, 95% CI 1.08-11.7 for African-Americans and OR = 2.20, 95% CI 0.69-6.0 for Caucasians). Our data suggest that the CYP2D6 genetic polymorphism is not the strong risk factor for lung cancer suggested by some studies of phenotype, but may play a minor role.  相似文献   

4.
The p450 hepatic microsomal enzyme system metabolizes exogenous drugs and carcinogens. Debrisoquine hydroxylase (CYP2D6), one member of the p450 hemoproteins, has polymorphic expression leading to poor metabolism of debrisoquine and similar compounds in approximately 7% of Caucasians. The genetic locus for this enzyme has been characterized, and the mutations responsible for the slowed metabolism have been identified. Epidemiological studies of the CYP2D6 phenotype suggest an association between the normal or rapid metabolism phenotype and increased risk of lung and bladder cancer. Preliminary data have also suggested an association with prostate cancer (CaP). We used a PCR-based assay to investigate possible associations between the CYP2D6 B allele, the most common genetic mutation responsible for the poor metabolism phenotype, and CaP. Using genomic DNA isolated from peripheral blood, we genetically typed 571 men with CaP and 767 matched controls, all participants in the Physician's Health Study. Relative to men homozygous for the wild-type allele, heterozygotes for the B allele have an odds ratio of 1.19 (95% confidence interval, 0.94-1.51) for CaP, and men homozygous for the B allele have an odds ratio of 1.37 (95% confidence interval, 0.86-2.20). When analyzed as a trend over zero, one, or two copies of the B allele, there emerges a possible association between the B allele and an increased risk of CaP of borderline statistical significance (P = 0.07).  相似文献   

5.
Mono-specific antibodies against the human cytochrome P450 (P450) enzymes CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2D6, CYP2E1, CYP3A4, CYP3A5 and CYP4A11 and an antibody that binds to CYP2C8, CYP2C9 and CYP2C19 have been produced by immunising rabbits with synthetic peptides representing small regions of each of these P450 enzymes. The specificity of the antibodies was confirmed by immunoblotting using recombinant P450 enzymes and samples of human hepatic microsomal fraction. Each of the antibodies bound only to their respective target P450 enzyme(s). The relative intensity of immunoreactive bands was compared with a variety of P450 activities and correlations were found between CYP1A2 and phenacetin O-deethylase activity, CYP2A6 and coumarin 7-hydroxylase activity, CYP2C9 and tolbutamide 4-hydroxylase activity, CYP2C19 and S-mephenytoin 4-hydroxylase activity, CYP2D6 and debrisoquine 4-hydroxylase activity, CYP2E1 and chlorzoxazone 6-hydroxylase activity, CYP3A4 and midazolam 1'-hydroxylase activity, and CYP4A11 and lauric acid 12-hydroxylase activity. A proportion of the 30 liver samples examined lacked CYP2A6 (7%), CYP2C19 (10%) or CYP2D6 (13%), consistent with the polymorphic expression of these P450 enzymes in human liver. Although CYP3A5 was detected in most individuals (97%), expression was polymorphic with 20% containing substantially higher levels. CYP2B6 was expressed in 20% of the human liver samples, with one sample containing a particularly high level. No immunodetectable CYP1A1 or CYP1B1 was found, consistent with the low level of expression of these P450 enzymes in human liver. The results demonstrate the utility of the antipeptide approach for producing specific antibodies against human P450 enzymes, enabling a comprehensive panel of antibodies against human P450 enzymes to be produced.  相似文献   

6.
Polymorphisms of cytochrome P450 genes show pronounced interethnic variation and have not been previously studied in the South-Amerindian population, which probably has an Asian origin. Therefore, a similar distribution of allelic and haplotype frequencies of cytochrome P450 genes to Asian populations might be expected in South-Amerindians. We analysed the allelic frequencies and haplotype distribution for CYP2D6, CYP1A1 and CYP2E1 genes in the South-Amerindian population of Chile (Mapuche, n = 84) by Southern blot or polymerase chain reaction-restriction fragment length polymorphism. Similar allelic frequencies and haplotype distribution for the CYP2E1 gene between Mapuches and Asian populations were observed. Frequencies of the two major functional CYP2D6*1 and CYP2D6*2 alleles and the CYP2D6*5 null allele were similar to most populations world-wide. The alleles CYP2D6*3 and *9, absent in Asians, were not found in Mapuches. The CYP2D6*4 allelic group, uncommon in Asian populations, had a low frequency in Mapuches (0.036). However, the CYP2D6*10 allele (Ch1, Ch2 and J), highly frequent in Asians (0.33-0.50), had a very low frequency (0.018) in our study population. In addition, the presence of the common Chinese 44 kb XbaI fragment of CYP2D6 (0.19-0.31 in Asians) was not detected in South-Amerindians. Interestingly, high frequencies for the rare m2 and Val alleles of the CYP1A1 gene were found in Mapuches (0.821 and 0.91, respectively), and the rare Val/m2 haplotype was significantly higher in Mapuches (0.748) than in Asians (0.24) (P < 0.01). The frequency of this haplotype in Mapuches is the highest frequency reported to date. The population studied was in Hardy-Weinberg equilibrium for these polymorphisms. The major differences between Mapuches and Asians were for CYP2D6*10 and CYP1A1 allelic frequencies, as well as the absence of the common Chinese 44 kb XbaI fragment of CYP2D6. These differences might be interpreted as a consequence of genetic drifts caused by a founder effect in the settlement of South-Amerindians, or genetic selection caused by dietary or environmental factors.  相似文献   

7.
CYP2D6 genotyping (CYP2D6*3, CYP2D6*4, CYP2D6*5, CYP2D6*13, CYP2D6*16 alleles and gene duplications) was previously performed on 1053 Caucasian and African-American lung cancer cases and control individuals and no significant difference in allele frequencies between cases and control individuals detected. We have carried out additional genotyping (CYP2D6*6, CYP2D6*7, CYP2D6*8, CYP2D6*9, CYP2D6*10, CYP2D6*17 alleles) and debrisoquine phenotyping on subgroups from this study to assess phenotype-genotype relationships. African-Americans showed significant differences from Caucasians with respect to frequency of defective CYP2D6 alleles, particularly CYP2D6*4 and CYP2D6*5. The CYP2D6*17 allele occurred at a frequency of 0.26 among 87 African-Americans and appeared to explain higher average metabolic ratios among African-Americans compared with Caucasians. CYP2D6*6, CYP2D6*8, CYP2D6*9 and CYP2D6*10 were rare in both ethnic groups but explained approximately 40% of higher than expected metabolic ratios among extensive metabolizers. Among individuals phenotyped with debrisoquine, 32 out of 359 were in the poor metabolizer range with 24 of these (75%) also showing two defective CYP2D6 alleles. Additional single strand conformational polymorphism analysis screening of samples showing large phenotype-genotype discrepancies resulted in the detection of three novel polymorphisms. If subjects taking potentially interfering drugs were excluded, this additional screening enabled the positive identification of 88% of phenotypic poor metabolizers by genotyping. This sensitivity was comparable with that of phenotyping, which identified 90% of those with two defective alleles as poor metabolizers.  相似文献   

8.
Cytochrome P450 2D6 (CYP2D6) metabolizes many important drugs. CYP2D6 activity ranges from complete deficiency to ultrafast metabolism, depending on at least 16 different known alleles. Their frequencies were determined in 589 unrelated German volunteers and correlated with enzyme activity measured by phenotyping with dextromethorphan or debrisoquine. For genotyping, nested PCR-RFLP tests from a PCR amplificate of the entire CYP2D6 gene were developed. The frequency of the CYP2D6*1 allele coding for extensive metabolizer (EM) phenotype was .364. The alleles coding for slightly (CYP2D6*2) or moderately (*9 and *10) reduced activity (intermediate metabolizer phenotype [IM]) showed frequencies of .324, .018, and .015, respectively. By use of novel PCR tests for discrimination, CYP2D6 gene duplication alleles were found with frequencies of .005 (*1x2), .013 (*2x2), and .001 (*4x2). Frequencies of alleles with complete deficiency (poor metabolizer phenotype [PM]) were .207 (*4), .020 (*3 and *5), .009 (*6), and .001 (*7, *15, and *16). The defective CYP2D6 alleles *8, *11, *12, *13, and *14 were not found. All 41 PMs (7.0%) in this sample were explained by five mutations detected by four PCR-RFLP tests, which may suffice, together with the gene duplication test, for clinical prediction of CYP2D6 capacity. Three novel variants of known CYP2D6 alleles were discovered: *1C (T1957C), *2B (additional C2558T), and *4E (additional C2938T). Analysis of variance showed significant differences in enzymatic activity measured by the dextromethorphan metabolic ratio (MR) between carriers of EM/PM (mean MR = .006) and IM/PM (mean MR = .014) alleles and between carriers of one (mean MR = .009) and two (mean MR = .003) functional alleles. The results of this study provide a solid basis for prediction of CYP2D6 capacity, as required in drug research and routine drug treatment.  相似文献   

9.
Parkinsonism-dementia complex (PDC), a neurodegenerative disorder in the Chamorro, Guam population, has been epidemiologically ascribed to the ingestion of the neurotoxin cycasin. This disease is characterized neuropathologically by the presence of abundant neurofibrillary tangles (NFTs). We analyzed a genetic risk factor of Alzheimer's disease (AD), apolipoprotein E, hypothesized to be linked to NFT formation, and a genetic risk factor of Parkinson's disease (PD), CYP2D6 mutation, linked to slower metabolism of exogenous toxins, in Chamorro, Guam individuals with and without PDC. The representation of the G-to-C mutation in exon 9 of the CYP2D6 gene was higher in Chamorro and Filipino than in Caucasian individuals, but this mutant allele had similar high frequencies in both PDC patients and healthy Chamorro individuals. We found no alleles of these genes associated with AD or PD to be overrepresented among those with PDC.  相似文献   

10.
OBJECTIVE: Genetic oxidation polymorphisms of debrisoquine (CYP2D6) and proguanil (CYP2C19) were studied in unrelated healthy South Pacific Polynesian volunteers recruited in the South Island of New Zealand. METHODS: Phenotyping for CYP2D6 and CYP2C19 activities was determined using debrisoquine and proguanil, respectively, as probe drugs by measuring the urinary metabolic ratio of parent drug and its metabolite. RESULTS: Of 100 Polynesian subjects phenotyped, the metabolic ratio of debrisoquine ranged from 0.01 to 9.94. Therefore, all South Pacific Polynesians were classified as extensive metabolizers of debrisoquine according to previously established criteria of the antimode. The prevalence of poor metabolizers of debrisoquine (CYP2D6) in this Polynesian population is 0% (95% confidence interval of 0-3.6%). Oxidation polymorphism of CYP2C19 using proguanil as a probe was also studied in 59 Polynesian volunteers. The frequency distribution of the proguanil/cycloguanil ratio was bimodal. The proguanil/cycloguanil ratios for these subjects ranged from 0.09 to 34.4. Using a recommended proguanil/cycloguanil ratio cut-off point of 10 established in Caucasian populations, eight Polynesian subjects were identified as poor metabolizers of proguanil (CYP2C19), which corresponds to a poor metabolizer phenotype frequency of 13.6% (a 95% confidence interval of 5.9-24.6%). CONCLUSION: The incidence of poor metabolizer phenotypes for debrisoquine (CYP2D6) in South Pacific Polynesians appears to lower than in Caucasian populations, while the prevalence of poor metabolizers for proguanil (CYP2C19) in this ethnic population is higher. The frequencies of the poor metabolizer phenotype for debrisoquine and also for proguanil in South Pacific Polynesians are similar to those reported in Asian populations.  相似文献   

11.
The polymorphic cytochrome P450 CYP2D6 is involved in the metabolism of various drugs of wide therapeutic use and is a presumed susceptibility factor for certain environmentally-induced diseases. Our aim was to define the mutations and alleles of the CYP2D6 gene and to evaluate their frequencies in the European population. Using polymerase chain reaction-single strand conformation polymorphism analysis, 672 unrelated subjects were screened for mutations in the 9 exons of the gene and their exon-intron boundaries. A total of 48 point mutations were identified, of which 29 were novel. Mutations 1749 G-->C, 2938 C-->T and 4268 G-->C represented 52.6%, 34.3% and 52.9% of the mutations in the total population, respectively. Of the eight detrimental mutations detected, the 1934 G-->A, the 1795 Tdel and the 2637 Adel accounted for 65.8%, 6.2% and 4.8% respectively, within the poor metabolizer subgroup. Fifty-three different alleles were characterized from the mutation pattern and by allele-specific sequencing. They are derived from three major alleles, namely the wild-type CYP2D6*1A, the functional CYP2D6*2 and the null CYP2D6*4A. Five allelic variants (CYP2D6*1A, *2, *2B, *4A and *5) account for about 87% of all alleles, while the remaining alleles occur with a frequency of 0.1%-2.7%. These data provide a solid basis for future epidemiological, clinical as well as interethnic studies of the CYP2D6 polymorphism and highlight that the described single strand conformation polymorphism method can be successfully used in designing such studies.  相似文献   

12.
The mutant of CYP2D6*3 allele with A2637 deletion in exon 5 and the mutant of CYP2D6*4 allele G1934-->A, splice site defect are among the most common polymorphic alleles of CYP2D6 gene, resulting in a decreased or no activity of CYP isoenzyme. In this study, a reliable polymerase chain reaction-restriction fragment length polymorphism method for identification of CYP2D6*3 and CYP2D6*4 alleles was used to investigate the genotype and phenotype prevalence in the groups of normal controls, and of cirrhosis and cancer patients. The results showed none of 36 controls genotyped for 2D6*3 and 2D6*4 allele to have the 2D6*3 allele with frameshift mutation in exon 5, while 33% (n=12) were found to bear the 2D6*4 allele with G to A mutation at the intron 3-exon 4 junction. In breast cancer patients (n=35) genotyped for 2D6*3 and 2D6*4 alleles, none with 2D6*3 allele was found either, but 60% (n=18) were found to bear the 2D6*4 allele. In patients with head and neck squamous cell cancer, there was only one subject with 2D6*3 allele and he was heterozygous. Among them, as many as ten (40%) patients were found to bear 2D6*4 allele. In the cirrhosis group, none of the patients was found to have the 2D6*3 allele, while the CYP2D6*4 allele was found in 23% (n=6) patients. The phenotype predicted according to the genotype was as follows: in the control group, 3% of individuals were identified as poor metabolizers, 70% as extensive metabolizers, and 27% as heterozygote extensive metabolizers. In the group of breast cancer, 7% of the patients were identified as poor metabolizer, 57% as extensive metabolizer and 36% as phenotype. In squamous cell cancer and cirrhosis patients, the incidence of poor metabolizer was zero, and of heterozygotes extensive metabolizer 42% and 31%, respectively.  相似文献   

13.
OBJECTIVE: To test whether some genotypes for CYP2D6 or CYP2C19 could contribute to longevity, we genotyped 241 Danish nonagenarians and centenarians for CYP2D6 and CYP2C19. METHODS: For CYP2D6 we identified the alleles CYP2D6*1, CYP2D6*3 and CYP2D6*4 with allele-specific polymerase chain reaction (PCR). The CYP2D6*5 alleles were identified with a long PCR method. For CYP2C19 we identified the alleles CYP2C19*1, CYP2C19*2 and CYP2C19*3 with an oligonucleotide ligation assay. RESULTS: The four alleles for CYP2D6 did not occur in Hardy-Weinberg proportions. The frequency of poor metabolism was slightly higher (10.2%) than expected [7.7%; odds ratio (OR) = 1.36 (0.75-2.40)]. The genotypes for CYP2C19 occur in Hardy-Weinberg proportions. The frequency of poor metabolism (3.8%) was not significantly different from a young control group [3.1%; OR = 1.21 (0.26-5.75)]. CONCLUSION: CYP2D6 could play a role in human longevity due to the lack of Hardy-Weinberg proportions. If CYP2D6 only plays a role in longevity by protecting the poor metabolizers from cancer, we should expect a rise in the frequency in these genotypes in Denmark from 7.7% among young adults to 10-11% among very old people. We found a frequency of poor metabolism of 10.2% in the very old group. CYP2C19 is - due to the occurrence of Hardy-Weinberg proportions and the expected number of poor metabolizers unlikely to contribute to human longevity.  相似文献   

14.
In this study the known promoter region of P450aldo gene (CYP11B2) was investigated in patients with idiopathic hyperaldosteronism, a disease characterised by hypertension due to aldosterone oversecretion. We amplified the 2.2 kb promoter region of 6 patients and 7 controls from the same ethnic population by PCR and sequenced the product. Thirteen polymorphic sites were found. Of the most significant, one was within a predicted CRE and another previously described polymorphic site was located in a putative SF-1 binding site. To elucidate the allelic distribution of the polymorphisms, the PCR products were cloned and both alleles for each patient were sequenced. As the same alleles and allele combinations were found in hypertensive patients as well as in normal subjects, it was concluded that none of the polymorphisms was responsible for hyperaldosteronism.  相似文献   

15.
Twenty-one healthy Swedish Caucasian volunteers, representing different groups with 0-13 functional cytochrome P450 (CYP) 2D6 genes, were given a single oral dose of 20 mg of debrisoquine. The hypothesis of further oxidation of the main metabolite, (S)-4-hydroxydebrisoquine, in subjects with multiple CYP2D6 genes was tested by screening the 0-8-hr urine samples for dihydroxylated metabolites of debrisoquine with protonated molecular ions at m/z 208, using LC/MS. Three peaks were detected in a subject with 13 functional CYP2D6 genes. One compound was identified as dihydroxylated debrisoquine (presumably with hydroxylation at position 4 plus one of the positions in the aromatic ring). This metabolite had not been previously demonstrated in humans and was detected only in this subject. The other two compounds, which were measurable in various amounts in all subjects investigated, were identified as 2-(guanidinomethyl)phenylacetic acid and 2-(guanidinoethyl)benzoic acid. They had been previously detected in the urine of humans, dogs, and rats. They were distinguished by acid-catalyzed deuterium exchange of the hydrogens at the alpha-position, with respect to the carboxylic acid group, of the former but not the latter acid. The acids are formed by 3- and 1-hydroxylation of debrisoquine, respectively, followed by ring opening to aldehydes, which are further oxidized to acids. Strong Spearman rank correlations between debrisoquine products of 1- or 3-hydroxydebrisoquine and debrisoquine/4-hydroxydebrisoquine ratios (rS = 0.97 and rS = 0.96, respectively), using the intensity of the peaks of the reconstructed ion-current chromatograms, clearly showed that both hydroxylation steps are catalyzed by CYP2D6. Because reference compounds for the two acids were not available, the absolute quantities could not be determined.  相似文献   

16.
Disturbances of the dopamine system are involved in the pathogenesis of idiopathic Parkinson's disease (PD). Although genetic factors may play a role in the etiology of PD, there is little direct evidence implicating a specific gene. We conducted a study to test the hypothesis that allelic variations of the dopamine receptors (D2, D3, D4) and the dopamine transporter (DAT) contribute to the susceptibility to PD. Association analyses of 70 Japanese PD patients and the same number of age-matched controls did not reveal any association between alleles of the D2, D3 or D4 receptor genes or the DAT gene and PD. Thus, our results suggest that factor(s) other than allelic variations of these key proteins in the dopamine system contribute to the susceptibility to PD.  相似文献   

17.
The steroid 21-hydroxylase deficiency (21OHD) is the most frequent cause of congenital adrenal hyperplasia. We have characterized the disease-causing mutations in the 21-hydroxylase genes of 63 patients with salt-wasting congenital adrenal hyperplasia from a Chilean population of Hispanic origin, a group that has been scarcely evaluated. Using allele-specific PCR, lesions were identified in 97 chromosomes out of 126 tested (77%). The most frequent findings were the gene deletion or large gene conversion (LGC) = 22.9%, I2 splice = 19%, R357W = 12.7%, and Q319X = 10.5%. We did not find alleles with the mutation F308insT and we found three alleles with the cluster E6. The frequency of the point mutation R357W was at least two times more frequent than the one found in Caucasians populations, but similar to that communicated in Asian populations; this finding may be explained by the Asian ancestry of our South-Amerindian population. The frequency of Q319X was also high, similar only to those patients studied in Italy and in a neighboring Argentinian population. In summary, this is a genetic characterization of 21OHD made in an almost pure Hispanic population in Latin America. The high frequency of deletion of CYP21B gene, I2 splice, R357W, and Q319X mutations probably reflects the European-Caucasian-Spanish influence of the conquerors, mixed with Amerindians of Asian ancestry and modulated by other European immigrations.  相似文献   

18.
19.
Sequential oxidations at the arylamine moiety of the procainamide molecule leading to the formation of N-hydroxyprocainamide and its nitroso derivative may be responsible for lupus erythematosus observed in patients treated with the drug. The objective of the present study was to characterize major cytochrome P450 isozyme(s) involved in the N-hydroxylation of procainamide. Firstly, incubations were performed with microsomes from either lymphoblastoid cells or yeast transfected with cDNA encoding for specific human cytochrome P450 isozymes. Experiments performed with these enzyme expression systems indicated that the highest formation rate of N-hydroxyprocainamide was observed in the presence of CYP2D6 enriched microsomes. Additional experiments demonstrated that the formation rate of N-hydroxyprocainamide by CYP2D6 enriched microsomes was decreased from 45 +/- 4% to 93 +/- 1% by quinidine at concentrations ranging from 30 nM to 100 microM (all p < 0.05 vs control) and by approximately 75% by antibodies directed against CYP2D6. Secondly, incubations were performed with microsomes prepared from 15 human liver samples. Using this approach, an excellent correlation was observed between the formation rate of N-hydroxyprocainamide and dextromethorphan O-demethylase activity (CYP2D6; r = 0.9305; p < 0.0001). In contrast, no correlation could be established between N-hydroxyprocainamide formation rate and caffeine N3-demethylase (CYP1A2), coumarin 7-hydroxylase (CYP2A6), S-mephenytoin N-demethylase (CYP2B6), tolbutamide methlhydroxylase (CYP2C9), S-mephenytoin 4'-hydroxylase (CYP2C19), chlorzoxazone 6-hydroxylase (CYP2E1), dextromethorphan N-demethylase (CYP3A4), testosterone 6 beta-hydroxylase (CYP3A4/5) or lauric acid 12-hydroxylase (CYP4A11) activities. Furthermore, formation rate of N-hydroxyprocainamide was decreased in a concentration-dependent manner by quinidine (300 nM to 100 microM) and by antibodies directed against CYP2D6 but not by furafylline 20 microM (CYP1A2), ketoconazole 1 microM (CYP3A4), sulfaphenazole 10 microM (CYP2C9) or antibodies directed against CYP1A1/1A2, CYP2C, CYP2A6, CYP2E1 or CYP3A4/3A5. In conclusion, the results obtained in the present study demonstrate that CYP2D6 is the major human cytochrome P450 isozyme involved in the formation of the reactive metabolite of procainamide, namely N-hydroxyprocainamide.  相似文献   

20.
Environmental or endogenous toxins may cause nigral cell death in Parkinson's disease (PD) as a result of genetic susceptibility conferred by altered expression of P450 enzymes. Attention over the last 10 years has focused on CYP2D6 polymorphisms and susceptibility to PD. This review summarizes reports arising from both phenotypic and genotypic studies involving CYP2D6 and PD. Phenotypic studies have failed to support a link between CYP2D6 and PD. The more powerful genetic studies initially indicated a link between CYP2D6B mutations and PD, but critical analysis of the literature and recent studies emerging from independent laboratories fail to confirm this. Mutations in CYP2D6B are also not implicated in familial PD. As yet, there is no conclusive evidence to suggest that CYP2D6 polymorphisms confer susceptibility to PD. Whether polymorphisms in other P450s (for example, CYP1A1 and CYP2E1) are implicated in PD remains to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号