首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Magnetotelluric and geomagnetic depth soundings have been carried out in the area of the Travale high enthalpy geothermal field (central Tuscany, Italy) in 1980 and 1981 to study the distribution of electrical conductivity in the geothermal anomaly and the crust beneath. Within this project the possible contributions of electromagnetic investigations to geothermal research were to be tested and a geothermal model of the Travale area was to be developed. The time-varying electric and magnetic fields have been recorded in a broad period range from 6–10,000 s, mainly on two profiles, the one parallel, the other perpendicular to the Travale graben. Strong lateral variations of apparent resistivities have been observed. Up to periods of 50–100 s the Travale graben is the dominating 2-D structure, but for longer periods of investigation the three-dimensionality of electrical conductivity structures has to be considered. The apparent resistivities inside the geothermal anomaly are extremely low, reaching not more than 50 ohm · m, even in the lower crust, but they increase to 100–300 ohm · m north of the geothermal field. Total conductance also indicates the geothermal field as a local conductivity anomaly, whereas further to the north the poorly conducting “barrier” has been confirmed. The cause of the high conductivity structures inside the geothermal area is to be seen in a highly fractured basement within this zone, allowing upward movement of hydrothermal fluids.  相似文献   

2.
Three independent geothermal systems have been identified, so far, in the Asal region of the Republic of Djibouti (i.e. Gale le Goma, Fiale and South of Lake). Six deep wells have been drilled in the region, the first two in 1975 and the others in 1987–88. Well A2 was damaged and wells A4 and A5 encountered impermeable yet very hot (340–365 °C) rocks. Wells A1, A2, A3 and A6 produce highly saline (120 g/L TDS) fluids leading to mineral scaling. Well test data indicate that the reservoir might be producing from fractured and porous zones. The estimated permeability-thickness of the deep Gale le Goma reservoir is in the 3–9 darcy-meter range. Lumped-parameter modeling results indicate that well A3 should be operated at about 20 kg/s total flow rate and that injection should be considered to reduce pressure drawdown. The estimated power generation potential of well A3 is 2.5 MWe, and that of all Asal high-temperature hydrothermal systems is between 115 and 329 MWe for a 25-year exploitation period.  相似文献   

3.
4.
The application of a new method, namely the M.T.-5-E.X. (Musé 1973), to geothermal prospecting in the region of Travale (Tuscany, Italy) is described here.The aim is to test the efficacy of this method in revealing, on the inside of the geothermal area, the most fractured zones and possibly to localize where the fluids rise from the deeper layers. A first discussion of results is given and a model is proposed which fits the recorded facts. Although a full interpretation of the results will only be possible when the research foreseen in this zone is at a more advanced stage, it is already evident that the method is destined to be widely applied in the future in geothermal research.  相似文献   

5.
Larderello–Travale is one of the few geothermal systems in the world that is characterized by a reservoir pressure much lower than hydrostatic. This is a consequence of its natural evolution from an initial liquid-dominated to the current steam-dominated system. Beneath a nearly impermeable cover, the geothermal reservoir consists of carbonate-anhydrite formations and, at greater depth, by metamorphic rocks. The shallow reservoir has temperatures in the range of 220–250 °C, and pressures of about 20 bar at a depth of 1000 m, while the deep metamorphic reservoir has temperatures of 300–350 °C, and pressures of about 70 bar at a depth of 3000 m. The 3D numerical code “TOUGH2” has been used to conduct a regional modeling study to investigate the production mechanism of superheated steam, the interactions between the geothermal field and the surrounding deep aquifers, and the field sustainability. All the available geoscientific data collected in about one century of exploration and exploitation have been used to provide the necessary input parameters for the model, which covers an area (4900 km2) about 10 times wider than the Larderello–Travale geothermal field (400 km2). The numerical model explains the origin of the steam extracted in about one century of exploitation and shows that, at the current level, the production is sustainable at least for the next 100 years.  相似文献   

6.
A new geoelectric prospecting method has been tested in the Travale - Radicondoli geothermal area. This method is based on the dipolar technique that permits investigation at very great depths with much fewer problems than encountered when using the classical electric prospecting techniques.The following steps were taken in order to operate with relatively low power from a 2 kW generator:
1. (i) the ground was energized with a series of current square waves at a frequency of less than 0.05 Hz in order to avoid the effects of electromagnetic coupling and induced polarization;
2. (ii) the voltage was recorded digitally at the measuring dipole;
3. (iii) the voltage recordings were processed by the spectral analysis method of “maximum likelihood”.
The resulting apparent resistivity diagrams were transformed into Schlumberger diagrams and then interpreted quantitatively.The six soundings are too limited in number to represent a real prospecting but refer to different geological and structural situations typical of a geothermal area. Two electrosoundings were sited for this purpose so as to be directly calibrated by the wells in the local geothermal field. The quantitative analysis of the resistivity diagrams in particular revealed the low resistivity values of the carbonate formation forming the geothermal reservoir, where the hot fluid circulation is particularly strong (15 Ω.m).The dipolar method has proved capable of distinguishing, in the geological situation of Travale area, the various structural features of the geothermal field such as “cover”, “reservoir”. substratum, uplifted structures and tectonic depressions.  相似文献   

7.
An original electromagnetic method has been applied to geothermal prospecting on the Travale test site. The results show good correlations between observed polarization anomalies and productive zones. It is believed that these anomalies are related to reduction phenomena that occurred in the overburden (such as pyrite formation) caused by thermochemical exchanges between the reservoir and the overburden above those zones where the reservoir permeability is highest.  相似文献   

8.
The purpose of the research activities at the Skierniewice geothermal test site is to develop and apply an exploration methodology for low-enthalpy systems in sedimentary formations. Work included seismic and magnetotelluric surveys carried out close to well Kompina-2 to create a detailed structural–geologic model and characterize the anisotropic fracture system around the borehole. The study included the reprocessing of archival data from selected boreholes and 2D seismic lines. The collected data were used to identify formations with high fracture permeability and the presumed flow path of geothermal (∼110 °C) brine in high productivity zones, and determining rock porosities and salinity distribution in the subsurface. The next stage of the investigations will focus on siting a second borehole and studying the possibility of installing a plant for electrical generation or direct geothermal heat applications.  相似文献   

9.
Geothermal reservoirs are usually tied to geological structures that are not easily explored by one geophysical method only. The combined application of several different techniques seems to be the most promising strategy. The development of the best combination of methods, comparison of the available instruments, and a number of processing and interpretation techniques have to be tested on a well-studied geothermal reservoir. The Travale geothermal field (Tuscany, Italy) is a high enthalpy hydrothermal system with single phase (vapour or liquid) or two-phase conditions, dominating in different parts of the reservoir. This field was chosen as a test site for geophysicists of the EEC member states. Since 1980 electrical, electromagnetic, magnetic and seismic exploration techniques have been tested in cooperation with ENEL, the Italian Electricity Agency, under the sponsorship of the Community.  相似文献   

10.
In this paper a brief review is given of the dependence of the oxygen isotopic fractionation of the sulfate ions-water system on temperature and the pH. From the available experimental data some relationships have been elaborated, which show that the isotopic exchange time is strongly temperature and pH dependent. The times for 97 per cent of isotopic exchange (near equilibrium conditions) at pH 7.0 are about 9 years at 200°C and 0.6 years at 330°C, while at pH 3.8 and at the same temperatures the times of exchange are 1.5 years and 0.08 years respectively. Thus, at the temperatures and pH of geothermal reservoirs the sulfate could be in isotopic equilibrium with environmental water, and the oxygen isotopic fractionation factors of sulfate-water geothermal pairs, being temperature dependent, can be used as geothermometers.Also reported here are some results on the O18 content of sulfate-water pairs from some wells on the edge of and outside the Larderello geothermal basin. The estimated isotopic temperatures are not very significant for the deep reservoir temperatures due to the geological features of the Larderello area which show important outcropping and deep anhydrite layers. Furthermore, as regards the wells outside the Larderello basin (Travale wells) some mixing of the geothermal water with colder underground water has been proved. However, the isotopic temperatures are generally higher than those measured at the well-head, and the highest ones are close to those estimated for the geothermal reservoir.In other geothermal areas more convenient from a geological point of view, the O18 content of the sulfate-water pair can be a useful and accurate thermometer.The O18/O16 ratios of several other sulfates (surface and deep anhydrite samples, sulfate ions in thermal springs) from the same area were also determined and differ substantially from borehole sulfate values.  相似文献   

11.
The Wairakei geothermal field has been under production for more than 50 years. Exploration wells show that the high-temperature and very permeable, productive resource extends over about 12 km2 within a greater area of about 25 km2 that shows various effects of thermal activity. Up to 2006, 3 km3 of fluid and 2750 PJ of energy had been extracted at an average rate of 5250 t/h and enthalpy of 1130 kJ/kg. Significant production started in 1955 and up to 1978 there was no injection of cooled geothermal fluids. During the first decade of operation a pressure drawdown of up to 20 bars (2 MPa) developed and spread evenly across the reservoir, even though fluid extraction was focused within an area of 1 km2 close to the northeastern field boundary. This pressure reduction resulted in widespread boiling and formation of segregated steam zones at the top of the reservoir together with inflow of cooler fluids into its northeastern part via the original natural outflow channels. From 1975 to 1997 pressures in the deep liquid reservoir stabilized at 23–25 bars (2.3–2.5 MPa) below the original pressure, with little change up to the time injection commenced in 1998. This natural pressure support indicates that prior to injection there was substantial recharge, 80% of which is assessed as high-temperature deep inflow. Since 1998 about 30% of the extracted fluids have been injected and reservoir pressures have increased by 3–4 bars (0.3–0.4 MPa). To date, significant returns of injected fluids have not been detected in the production areas. Over the 50 years of operation, temperatures in the main production areas have declined from 250 to 220 °C while deeper production zones toward the western boundary of the reservoir have remained at about 250 °C. A series of deeper makeup wells to maintain future production have been drilled in the high-temperature recharge area. An increasing fraction of injection, both in-field and out-field is planned over the next few years.  相似文献   

12.
In Greece the geothermal areas are located in regions of Quaternary or Miocene volcanism and in continental basins of high heat flow. The existence of high-temperature (>200 °C) resources has been proven by deep drilling on the islands of Milos and Nisyros and inferred on the island of Santorini by its active volcanism. Elsewhere, geological investigations, geochemical analyses of thermal springs and shallow drilling have identified many low-temperature (<100 °C) reservoirs, utilized for spas and greenhouse/soil heating. Ternary K–Na–Mg geothermometer data suggest deep, medium-temperature resources (100–200 °C) in Sousaki, the islands of Samothraki, Chios and Lesvos, in the basins of Nestos River Delta and Alexandroupolis and in the graben of Sperchios River. In the basins of northern Greece these resources are also inferred from deep oil exploration well data.  相似文献   

13.
As part of the European Community research programme telluric, magnetotelluric and geomagnetic deep sounding measurements were undertaken at 40 sites within the geothermal area of Travale. In the period range of 6–10,000 s the telluric field inside the Travale graben is strongly polarized and directed, independent of the period, about parallel to the graben strike. The lateral variation of the telluric field amplitude is determined mainly by the distribution of the rocks (e.g. the central part of the geothermal anomaly inside the graben is correlated with a horst structure of resistive rocks) and an influence of the geothermal anomaly on the telluric field distribution cannot be observed. The apparent resistivity, as well as the phase curves, are rather similar at all sites within the graben, exhibiting 4–40 ohm · m for periods of 10 s and 50–500 ohm · m for periods of 10,000 s in E-polarization. In the period range of 10–100 s the E- and B-polarization of magnetotelluric measurements can be interpreted by the 2-D effect of the Travale graben, while with increasing period the induced current system becomes more and more 3-D below all sites. This limits the determination of the sedimentary cover thickness (max. 2500 m) by 1-D and 2-D model calculations to periods of less than 100 s.  相似文献   

14.
The Wairakei geothermal field was the proving ground for the use of electrical resistivity methods for geothermal exploration. At this site it was first demonstrated that a large contrast in resistivity existed between geothermal ground and the cold surroundings. Within the top 500 m of the geothermal field, low-resistivity (5–10 Ωm) reflects the effects of both the hot saline water in the pore spaces and the conductive rock-matrix. The first surveys at Wairakei used a Wenner array (a ∼550 m) to measure the resistivity values along tracks throughout the field; contour maps of the resistivities were used to estimate the lateral extent of the geothermal waters at a few hundred metres depth. In the late 1960s the Wenner array was superseded by the Schlumberger array (AB/2 = 500 m and 1000 m), which enabled deeper penetration and better definition of the extent of the geothermal waters. These early surveys showed that the bounds of the geothermal waters were often sharp, leading to the concept that a ‘resistivity boundary’ could be defined for New Zealand's liquid-dominated geothermal fields. As new methods of measuring electrical structure with greater precision became available, Wairakei was often chosen as the testing ground.  相似文献   

15.
Shallow geothermal prospecting has been undertaken in three zones in Tunisia for which few deep thermal data are available. Five areas have been included in this work, and temperature data from depths between 35 and 335 m from 46 wells in these areas have been analyzed. In addition, thermal measurements have been made on 112 limestones, dolomites, and sandstones to add to the data base.Temperature profiles from the different areas vary substantially from well to well, and these variations depend on both the local and regional geological and hydrological conditions. The shallow thermal gradients vary from 11 mkm-1 to 132 mkm-1, compared with the maximum deep gradient so far observed in Tunisia of 52 mkm-1 (Ben Dhia, 1988). The discrepancies between shallow and deep gradients in the various regions appear to strongly depend on the geological continuity between the shallow and deeper layers, especially in zones where substantial tectonism has occurred.It is concluded that although near surface geothermal data are useful in areas where few deep data are available, great care must be taken in their interpretation, and both regional and local conditions must be considered. Furthermore, predicting the temperature conditions at depth from these observations can be uncertain, and so combining results from such studies with those from deeper data must be done with care.The Zazghouan area appears as an interesting geothermal prospect, while the others need more investigation to be conclusive.  相似文献   

16.
Structures within the deep geothermal reservoir in the Kakkonda field have been identified by a newly-developed reflection method using acoustic emission (AE) as a wave source. Reflected waves in three-component AE signals were detected independently of the wave amplitude by examining the linearity of a three-dimensional hodogram.There are many possible reflectors in this field, such as geological boundaries and fractured regions. In this paper are described some deep reflectors beneath the conventionally developed shallow geothermal reservoirs that were revealed by three-dimensional inversion of natural AE waveforms. These identified reflectors agree fairly well with geological constraints based on core samples from the field.  相似文献   

17.
As a contribution to the EEC study of the potential contribution of electric and electromagnetic techniques to geothermal exploration, magnetotelluric studies have been undertaken with a sounding bandwidth ranging from 2 to 7 decades of period at more than 30 sites within the chosen test area of Travale. This area must be one of the most unfavourable for the application of electrical techniques on account both of the thickness (up to 2 km) of conducting (< 1 ohm · m in some locations) cover formations and of the intensity of the artificial disturbances from local power stations and distribution lines. Nevertheless it has been possible to obtain good quality data over part of the sounding band employing an automatic in-field analysis system and rigorous data analysis and to penetrate to reservoir depths at the centre of the graben by undertaking broadband soundings (up to 10' s) at some sites. For interpretation of the data for periods up to about 100 s, 2-D modelling is both satisfactory and essential (1-D modelling provides correct layer resistivities but underestimates interface depths) and good agreement has been obtained for an electrical structure model and the relevant geological section. The 2-D models, which best fit the long period data, are characterised both by zones of highly conducting flysch cover formations and by an anomalously conducting basement. Restriction of the study to a test area within the Travate graben inhibits the unequivocal association of these conducting zones with the thermal anomaly.  相似文献   

18.
Five microgravity surveys, done between 1972 and 2006, show that in the northern part of the Tauhara geothermal field there were large gravity decreases prior to 1985 associated with the expansion of steam zones resulting from pressure drawdown caused by fluid extraction at Wairakei. Since 1985 there have been gravity increases of up to 240 μgal in the northern part of Tauhara, corresponding to a mass increase of about 20 Mt. The gravity increases are centred near the unused deep well TH4, and are inferred to result mainly from resaturation of a deep steam zone due to a downflow of water in the well. We suggest that the water entered the well from a confined groundwater aquifer at a known casing break at 393 m depth and exited in the region of slotted casing at about 900–1000 m depth causing displacement of single-phase liquid upwards into the overlying steam zone. The average downflow rate is estimated to be about 110 t/h (30 kg/s); however, no downhole measurements in the well have been possible due to casing breaks. Simple modelling of the gravity data suggests the region of resaturation had the form of a cone of impression 150–250 m high and extending laterally for 1–2 km. Since 1985, gravity changes in the central and southern parts of the Tauhara field have been less than 50 μgal, indicating little net mass loss (<2 Mt), and hence little effect in this area from the continuing production at Wairakei. The subsidence centred near Crown Road has been attributed to compaction of a thin, elliptical lens of porous, thermally-altered volcanic deposits at shallow depth as a result of a water level decline in the near-surface, steam-heated groundwater aquifer. Gravity data (1994 onwards) at a point near the centre of the subsidence bowl show that, despite ground subsidence of about 0.55 m, there have been no significant gravity changes. One explanation for the absence of gravity changes is that the water lost from the near-surface aquifer has drained downwards increasing the saturation in part of a deeper, partly saturated layer.  相似文献   

19.
Exploration for geothermal resources began in Romania in the early 1960s, based on a detailed geological exploration program for hydrocarbon resources that had a capacious budget and enabled the identification of eight geothermal areas. Over 200 wells drilled to depths between 800 and 3500 m have indicated the presence of low-enthalpy geothermal resources (40–120 °C). Completion and experimental production from over 100 wells during the past 25 years has led to the evaluation of the exploitable heat resources of the geothermal reservoirs. The proven reserves, with the wells that have already been drilled, amount to about 200,000 TJ for 20 years. The main geothermal systems discovered on Romanian territory are in porous permeable formations such as sandstones and siltstones (Western Plain and the Olt Valley) or in fractured carbonate formations (Oradea, Bors, and north of Bucharest). The total thermal capacity of the existing wells is about 480 MWt (for a reference temperature of 25 °C). Only 152 MWt of this potential is currently being exploited, from 96 wells (35 of which are used for health and recreational bathing), producing hot water in the temperature range 45–115 °C. In 2002 the annual energy utilisation from these wells was about 2900 TJ, with a capacity factor of 0.6. More than 80% of the wells are artesian producers, 18 wells require anti-scaling chemical treatment and six are reinjection wells. During the period 1995–2002, 15 exploration-production geothermal wells were drilled and completed, two of which were dry holes. Drilling was financed by the geological exploration fund of the State Budget, to depths varying between 1500 and 3500 m. Progress in the direct utilisation sector of geothermal resources has been extremely slow because of the difficulties encountered during the transition period from a centrally planned to a free-market economy; geothermal production is at present far below the level that could be expected from its assessed potential, with geothermal operations lagging behind in technology. The main obstacle to geothermal development in Romania is the lack of domestic investment capital. In order to stimulate the interest of potential investors from developed countries and to comply with the requirements of the large international banks, an adequate legal and institutional framework has been created, adapted to a market-oriented economy.  相似文献   

20.
Based on geological and geothermal knowledge of the Travale geothermal field, a mathematical model is proposed for the heat transfer from the top of the reservoir to the soil surface.Consistency between observed and calculated temperatures demonstrates that the heat is transferred by conduction and that the established temperature field depends essentially on the temperature at the top of the reservoir and its slope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号