共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the transvesicular protonmotive force in synaptic vesicle recycling was investigated in cultured cerebellar granule cells. The vesicular V-ATPase was inhibited by 1 microM bafilomycin A1; as an alternative, the pH component of the gradient was selectively collapsed by equilibration of the cells with 10 mM methylamine and monitored with the fluorescent probe Lysosensor Green. Electrical field-evoked exocytosis of D-[3H]aspartate was inhibited by bafilomycin A1 but not by methylamine, indicating that a transvesicular membrane potential rather than pH gradient is required for transmitter retention within vesicles. In contrast, neither compound affected the field-evoked uptake, recycling, or destaining of the vesicle-specific dye FM2-10; thus, vesicles whose lumens were neutral and/or depleted of transmitter could still recycle in the nerve terminal. No exhaustion of D-[3H]aspartate exocytosis was observed when cells were subjected to six consecutive trains of field stimuli (40 Hz/10 s separated by 10 s). In contrast, the release of preloaded FM2-10 was reduced by approximately 50%, with each stimulus indicating that unlabeled vesicles with accumulated D-[3H]aspartate were competing with labeled vesicles for exocytosis. As D-[3H]aspartate was accumulated rapidly across the vesicle membrane from the large cytoplasmic pool, the transmitter-loaded but unlabelled vesicles may represent refilled recycling vesicles. FM2-10 destaining and D-[3H]aspartate exocytosis were reduced in parallel at low frequencies, challenging a role for transient vesicle fusion. 相似文献
2.
M Villalba 《Canadian Metallurgical Quarterly》1998,9(10):2381-2385
Cerebellar granule cells (CGC) undergo massive DNA fragmentation, an apoptotic marker, in 8-day-old rat cerebellum. In vitro, they survive in the presence of depolarizing concentrations of KCl. Bisindolylmaleimide, a specific PKC inhibitor, blocks CGC apoptosis in vitro. Here I show that PKC delta, which has been involved in apoptosis in different cell lines, is constitutively cleaved in CGC, suggesting that its catalytic subunit is active per se. Moreover, KCl deprivation induces cyclin D1 expression and accumulation in nuclei. This process is blocked by bisindolylmaleimide. A model is proposed where, in the absence of survival signals, activated PKC delta induces cyclin D1 expression and accumulation in the nucleus, which subsequently, would lead to an aborted cell cycle and apoptosis. 相似文献
3.
The purpose of this research was to develop new in vitro methodology for measuring release from petrolatum-based semisolids and to determine whether two ointments, both of which contained betamethasone dipropionate, 0.05%, but with different formulations, could be distinguished by release measurements. Several receptor media were explored to optimize the procedure utilizing Franz-type cells. Analysis was by HPLC. The release slope was 1.5 to 6 times greater from the ointment than the "augmented" ointment (which had greater clinical potency). Release was highest with a receptor consisting of a 5% solution of hexane in acetonitrile. Even so, it was necessary to subject samples of receptor from the augmented ointment to evaporation followed by reconstitution with a smaller volume of mobile phase to bring corticosteroid concentrations up to quantifiable levels. In another series of experiments, the HPLC mobile phase was used as the receptor and a relatively large volume (100 microliters) was injected onto the column. With the second approach, measured concentrations were lower but more reproducible. Quantifiable levels of betamethasone dipropionate were obtained for both formulations beginning from the first data point (at 1 hr), with satisfactory linearity of plots of amount released per unit area of membrane versus the square root of time. Using this methodology, it was possible to distinguish the effect of formulation differences in two ointments containing the same drug in the same concentration. 相似文献
4.
We monitored simultaneously the changes in the intracellular sodium concentration ([Na+]i) and intracellular calcium concentration ([Ca2+]i) in individual neurons from primary cultures of cerebellar granule cells loaded with sodium-binding benzofuran isophthalate and fluo-3. An application of glutamate (50 microM) in Mg(2+)-free medium containing 10 microM glycine evoked [Na+]i and [Ca2+]i increases that exceeded 60 mM and 1 microM, respectively. The kinetics of [Na+]i and [Ca2+]i decreases after the termination of the glutamate pulse were different. [Na+]i failed to decrease immediately after glutamate withdrawal and the delay in the onset of [Na+]i decrease after the glutamate pulse termination was proportional to the glutamate dose, the glutamate pulse duration, and the extent of [Ca2+]i elevation elicited by glutamate. The kinetics of [Ca2+]i decrease were biphasic, with the first phase occurring immediately after glutamate withdrawal and the second phase being correlated in time with a [Na+]i value lower than 15-20 mM. These results were interpreted to indicate that the glutamate-evoked calcium influx may lead to sodium homeostasis destabilization. The delay in the restoration of the sodium gradient may in turn prolong the neuronal exposure to toxic [Ca2+]i values, due to the decrease in the efficiency of the Na+/Ca2+ exchanger to extrude calcium. The glutamate effects on [Na+]i and [Ca2+]i were potentiated by glycine. Glycine (10 microM) added alone also evoked [Na+]i and [Ca2+]i increases; this effect was inhibited by a competitive inhibitor of the N-methyl-D-aspartate receptor, 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, indicating an involvement of endogenous glutamate. 相似文献
5.
6.
CA Saura J Mallol EI Canela C Lluis R Franco 《Canadian Metallurgical Quarterly》1998,273(28):17610-17617
A1 adenosine receptors (A1Rs) and adenosine deaminase (ADA; EC 3.5.4. 4) interact on the cell surface of DDT1MF-2 smooth muscle cells. The interaction facilitates ligand binding and signaling via A1R, but it is not known whether it has a role in homologous desensitization of A1Rs. Here we show that chronic exposure of DDT1MF-2 cells to the A1R agonist, N6-(R)-(phenylisopropyl)adenosine (R-PIA), caused a rapid aggregation or clustering of A1 receptor molecules on the cell membrane, which was enhanced by pretreatment with ADA. Colocalization between A1R and ADA occurred in the R-PIA-induced clusters. Interestingly, colocalization between A1R and ADA also occurred in intracellular vesicles after internalization of both protein molecules in response to R-PIA. Agonist-induced aggregation of A1Rs was mediated by phosphorylation of A1Rs, which was enhanced and accelerated in the presence of ADA. Ligand-induced second-messenger desensitization of A1Rs was also accelerated in the presence of exogenous ADA, and it correlated well with receptor phosphorylation. However, although phosphorylation of A1R returned to its basal state within minutes, desensitization continued for hours. The loss of cell-surface binding sites (sequestration) induced by the agonist was time-dependent (t1/2= 10 +/- 1 h) and was accelerated by ADA. All of these results strongly suggest that ADA plays a key role in the regulation of A1Rs by accelerating ligand-induced desensitization and internalization and provide evidence that the two cell surface proteins internalize via the same endocytic pathway. 相似文献
7.
8.
Recent evidence suggests that neuronal apoptosis is the consequence of an inappropriate reentry into the cell cycle. Expression of the cell cycle gene cyclin D1, a G1-phase cell cycle regulator, was examined in primary cultures of murine cerebellar granule cells (CGCs) during kainate (KA)-mediated apoptosis. Using cultures of CGCs, we found that a 24-h exposure to KA (1-3,000 microM) induced a concentration-dependent cell death with neurons exhibiting characteristic apoptotic morphology and extensive labeling using the terminal transferase-mediated nick end-DNA labeling (TUNEL) method. KA induced a time- and concentration-dependent increase in expression of cyclin D1 as determined by immunocytochemistry and western blot analysis. KA-induced apoptosis and cyclin D1 expression exhibited a similar concentration dependence and were significantly attenuated by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (50 microM), indicating a KA receptor-mediated effect. Here we present evidence for the first time that KA-induced apoptosis in cultured CGCs involves the induction of cyclin D1, suggesting its involvement in excitotoxic receptor-mediated apoptosis. 相似文献
9.
L Elster T Banke U Kristiansen A Schousboe P Wahl 《Canadian Metallurgical Quarterly》1998,84(2):519-528
Expression of the glycine receptor was investigated in membranes prepared from primary cultures of mouse cerebellar granule cells and postnatal mouse cerebellum using the antagonist [3H]strychnine for ligand binding. Scatchard analysis of the binding data obtained from P17 cerebellum showed a single population of binding sites (K(D) approximately 6 nM) and [3H]strychnine binding to membranes prepared from cultured neurons and P17 cerebellum was found to have the same sensitivity to the glycinergic agonists glycine, beta-alanine and taurine. The development of [3H]strychnine binding sites in cultured cerebellar granule cells and cerebellum showed opposing profiles. [3H]strychnine binding to primary cultures increased significantly during the culture period whereas during development in vivo the number of binding sites decreased over time and was hardly detectable in the adult cerebellum. Release of preloaded D-[3H]aspartate evoked by 40 mM K+ from granule cells cultured for seven days was inhibited by glycine by about 50%. Beginning after seven days in culture the ability of glycine to inhibit transmitter release declined to no inhibition after 17 days in culture. Experiments with the non-competitive antagonist, picrotoxinin, showed no blocking effect of 150 microM picrotoxinin on the glycine-induced inhibition of transmitter release. This contrasted with the inhibitory effect of 100 microM picrotoxinin in whole-cell patch-clamp recordings on responses to 500 microM glycine (56% block). Furthermore, it was demonstrated that the amplitude of the glycine activated peak current had the same size after six to seven days and after 16-17 days in culture. Northern blot analysis, and co-injection of messenger RNA plus antisense oligonucleotides into Xenopus oocytes revealed glycine receptor alpha2 and beta messenger RNAs in the cultured granule cells. These findings suggest that granule cells in culture express glycine receptor isoforms containing alpha2 picrotoxinin-sensitive and alpha2/beta picrotoxinin-insensitive receptors. 相似文献
10.
D Merlo R Anelli P Calissano MT Ciotti C Volonté 《Canadian Metallurgical Quarterly》1997,47(5):500-508
Previous work identified the phosphorylation by extracellular ATP of an endogenous 45-kDa protein substrate and established the presence of ecto-protein kinase activity associated with cultured cerebellar granule neurons (Volonté et al.: J Neurochem 63:2028-2037, 1994). In this work, we characterize such ecto-phosphorylated 45-kDa protein substrate and its association with the cellular membrane. The total radioactive content of the 45-kDa protein is stable for the first 15 min after phosphorylation, and decreases about 70% in 30 min and 90% in approximately 2 hr. Rinsing the cells after the phosphorylating reaction causes a 50% removal of the incorporated radioactivity. Glycosidic residues are present on the 45-kDa ecto-protein, which is held in position on the cellular membrane through a specific glycosyl-phosphatidylinositol anchor. The extracellular incorporation of phosphate on the 45-kDa protein is not modulated by agents interfering with cytoskeleton stability, such as colchicine and taxol, or by gangliosides. The extracellular phosphorylation occurs mostly on serine residues, since the phosphate ester linkage is unstable at high pH and only antibodies raised against phosphoserine are capable of recognizing the 45-kDa ecto-protein. 相似文献
11.
S Ferré M Torvinen K Antoniou E Irenius O Civelli E Arenas BB Fredholm K Fuxe 《Canadian Metallurgical Quarterly》1998,273(8):4718-4724
The antagonistic interactions between adenosine A1 and dopamine D1 receptors were studied in a mouse Ltk- cell line stably cotransfected with human adenosine A1 receptor and dopamine D1 receptor cDNAs. In membrane preparations, both the adenosine A1 receptor agonist N6-cyclopentyladenosine and the GTP analogue guanyl-5'-yl imidodiphospate induced a decrease in the proportion of dopamine D1 receptors in a high affinity state. In the cotransfected cells, the adenosine A1 agonist induced a concentration-dependent inhibition of dopamine-induced cAMP accumulation. Blockade of adenosine A1 receptor signal transduction with the adenosine A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine or with pertussis toxin pretreatment increased both basal and dopamine-stimulated cAMP levels, indicating the existence of tonic adenosine A1 receptor activation. Pretreatment with pertussis toxin also counteracted the effects of low concentrations of the A1 agonist on D1 receptor-agonist binding. The results suggest that adenosine A1 receptors antagonistically modulate dopamine D1 receptors at the level of receptor binding and the generation of second messengers. 相似文献
12.
Endothelin-1 (ET-1) induced a time- and dose-dependent increase in the levels of mRNA of m2- and m3-muscarinic acetylcholine receptors (mAChRs) in cultured cerebellar granule cells. The levels of immunoprecipitable m3-mAChR protein and total mAChR binding sites were also increased by ET-1 treatment. The up-regulation of m2- and m3-mAChR was blocked by phorbol ester pretreatment to inhibit ET-1-stimulated phosphoinositide hydrolysis and was preceded by an increase in c-fos mRNA levels. Treatments that prevented ET-1-induced c-fos mRNA increase also abolished the subsequent m2- and m3-mAChR mRNA up-regulation, suggesting that c-Fos protein is involved in the ET-1-induced mAChR expression. 相似文献
13.
14.
We previously reported the generation of a library of hydrophobic oxazole-based small molecules designed as inhibitors of phosphatases involved in cellular signaling and cell cycle control. One member of the targeted array library, 4-(benzyl-(2-[(2, 5-diphenyl-oxazole-4-carbonyl)-amino]-ethyl)-carbamoyl)-2-decanoylami no butyric acid (SC-alphaalphadelta9), inhibited cell growth in the G0/G1 phase of the cell cycle. To investigate potential mechanisms for SC-alphaalphadelta9 antiproliferative activity, we have used mouse embryonic fibroblasts transformed with simian virus 40 large T antigen mouse embryonic fibroblasts as a model system for a malignant phenotype that depends on overexpression of cell cycle regulators and autocrine stimulation by insulin-like growth factor-1. Structure-activity relationship studies with SC-alphaalphadelta9 and four library congeners demonstrated that antiproliferative activity was not a result of overall hydrophobicity. Rather, SC-alphaalphadelta9 decreased insulin-like growth factor-1 receptor tyrosine phosphorylation, receptor expression, mitogen-activated protein kinase activation and levels of the cyclin-dependent kinase Cdc2. Less toxic congeners only partially affected receptor expression, receptor tyrosine phosphorylation and Cdc2 levels. Thus SC-alphaalphadelta9, which is structurally distinct from other known small molecules that decrease intracellular Cdc2 levels, has profound effects on intracellular signaling. Furthermore, SC-alphaalphadelta9, but not vanadate or okadaic acid, selectively inhibited the growth of simian virus 40 large T antigen mouse embryonic fibroblasts compared to the parental cells. These results suggest that overexpression of Cdc2 and increased dependence on insulin-like growth factor-1 autocrine stimulation are responsible for the increased sensitivity of simian virus 40 large T antigen mouse embryonic fibroblasts to SC-alphaalphadelta9. The SC-alphaalphadelta9 pharmacophore could be a useful platform for the development of novel antisignaling agents. 相似文献
15.
BACKGROUND: Because proliferation of cardiac fibroblasts participates in cardiac hypertrophy/remodeling associated with hypertension and myocardial infarction, it is important to elucidate factors regulating cardiac fibroblast proliferation. Adenosine, a nucleoside abundantly produced by cardiac cells, is antimitogenic vis-à-vis vascular smooth muscle cells; however, the effect of adenosine on cardiac fibroblast proliferation is unknown. The objective of this study was to characterize the effects of exogenous and endogenous (cardiac fibroblast-derived) adenosine on cardiac fibroblast proliferation. METHODS AND RESULTS: Growth-arrested cardiac fibroblasts were stimulated with 2.5% FCS in the presence and absence of adenosine, 2-chloroadenosine (stable adenosine analogue), or modulators of adenosine levels, including (1) erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA; adenosine deaminase inhibitor); (2) dipyridamole (adenosine transport blocker); and (3) iodotubericidin (adenosine kinase inhibitor). All of these agents inhibited, in a concentration-dependent manner, FCS-induced cardiac fibroblast proliferation as assessed by DNA synthesis ([3H]thymidine incorporation) and cell counting. EHNA, dipyridamole, and iodotubericidin increased extracellular levels of adenosine by 2.3- to 5.6-fold when added separately to cardiac fibroblasts, and EHNA+iodotubericidin or EHNA+iodotubericidin+dipyridamole increased extracellular adenosine levels by >690-fold. Both KF17837 (selective A2 antagonist) and DPSPX (nonselective A2 antagonist) but not DPCPX (selective A1 antagonist) blocked the antimitogenic effects of 2-chloroadenosine, EHNA, and dipyridamole on DNA synthesis, suggesting the involvement of A2A and/or A2B but excluding the participation of A1 receptors. The lack of effect of CGS21680 (selective A2A agonist) excluded involvement of A2A receptors and suggested a major role for A2B receptors. This conclusion was confirmed by the rank order potencies of four adenosine analogues. CONCLUSIONS: Cardiac fibroblasts synthesize adenosine, and exogenous and cardiac fibroblast-derived adenosine inhibits cardiac fibroblast proliferation via activation of A2B receptors. Cardiac fibroblast-derived adenosine may regulate cardiac hypertrophy and/or remodeling by modulating cardiac fibroblast proliferation. 相似文献
16.
The possible modulation of nitric oxide (NO) synthase (NOS) activity by protein kinase C (PKC) was investigated in primary cultures of rat cerebellar neurons. Incubation of the cells with L-arginine and nicotinamide-adenine dinucleotide phosphate (NADPH) produced detectable levels of NO, as quantified by photometric assay [0.14 +/- 0.03 nmol/h/dish (2.5 x 10(6) cells)]. The NO producing activity was paralleled by concomitant accumulation of cyclic GMP (cGMP) (0.12 +/- 0.02 pmol/dish). Downregulation of PKC by prolonged treatment with phorbol esters or inhibition of the kinase by treatment with 4taurosporine raised the basal levels of NO and cGMP five fold. When granule cells were incubated in the absence of extracellular Mg2+, N-methyl-D-aspartate and to a lesser extent, glutamate became effective in enhancing NO formation and cGMP accumulation with respect to the control. The NO and cGMP increases induced by the two agonists were almost doubled by treatment of the cells with staurosporine or depletion of PKC. Calphostin C. an inhibitor of the regulatory domain of PKC, was as effective as staurosporine in increasing the formation of NO in both resting and excited cells. These results indicate that downregulation or inhibition of PKC increase NOS activity in cerebellar neurons, and suggest that phosphorylation of NOS by PKC negatively modulates the catalytic activity of the enzyme in these cells. 相似文献
17.
EM Fykse 《Canadian Metallurgical Quarterly》1998,71(4):1661-1669
Studies performed over the past several years have provided evidence that phosphorylation of proteins is important in the regulation of neurotransmitter release. In this study, it is shown that rabphilin-3A is present in cerebellar granule cells as a phosphoprotein, by using 32P-labeling of cerebellar granule cells, immunoprecipitation, phosphoamino acid analysis, and phosphopeptide mapping. The level of phosphorylation was increased (224 +/- 13%) (mean +/- SEM) on depolarization of the cells with K+ (56 mM) in the presence of external Ca2+ (1 mM). Stimulation of protein kinase C with a phorbol ester (phorbol 12,13-dibutyrate) also enhanced the phosphorylation of rabphilin-3A (217 +/- 21%). Inhibitors of Ca2+/calmodulin-stimulated protein kinases or protein kinase C reduced the depolarization-enhanced phosphorylation of rabphilin-3A, indicating that rabphilin-3A is one of the targets for Ca2+-activated protein kinases in the nerve terminal. Costimulation of cells with phorbol 12,13-dibutyrate and K+ depolarization produced an increased level of phosphorylation of rabphilin-3A compared with either stimulus alone (287 +/- 61%). Phosphoamino acid analysis showed that serine was the main phosphorylated residue. A slight increase in the threonine phosphorylation could also be detected, whereas tyrosine phosphorylation could not be detected at all. These results suggest that rabphilin-3A is phosphorylated in vivo and undergoes synaptic activity-dependent phosphorylation during Ca2+-activated K+ depolarization. 相似文献
18.
At fast chemical synapses the rapid release of neurotransmitter that occurs within a few milliseconds of an action potential is followed by a more sustained elevation of release probability, known as delayed release. Here we characterize the role of calcium in delayed release and test the hypothesis that facilitation and delayed release share a common mechanism. Synapses between cerebellar granule cells and their postsynaptic targets, stellate cells and Purkinje cells, were studied in rat brain slices. Presynaptic calcium transients were measured with calcium-sensitive fluorophores, and delayed release was detected with whole-cell recordings. Calcium influx, presynaptic calcium dynamics, and the number of stimulus pulses were altered to assess their effect on delayed release and facilitation. Following single stimuli, delayed release can be separated into two components: one lasting for tens of milliseconds that is steeply calcium-dependent, the other lasting for hundreds of milliseconds that is driven by low levels of calcium with a nearly linear calcium dependence. The amplitude, calcium dependence, and magnitude of delayed release do not correspond to those of facilitation, indicating that these processes are not simple reflections of a shared mechanism. The steep calcium dependence of delayed release, combined with the large calcium transients observed in these presynaptic terminals, suggests that for physiological conditions delayed release provides a way for cells to influence their postsynaptic targets long after their own action potential activity has subsided. 相似文献
19.
20.
When cerebellar granule cells that had been cultured in vitro for 8 days were subjected to a cytotoxic glutamate pulse (100 microM, 30 min incubation), the response varied according to cell density and the volume of medium in which cells were grown. Thus, lowering the cell density by a factor of 4 compared with usual conditions (2.6 x 10(5) cells/cm2) or increasing the volume by an identical 4-fold factor reduced cell death from 90-95% to 20-30%. Addition of a conditioned medium derived from high-density to low-density cultures or to high-volume cultures markedly increased the sensitivity of the cells to glutamate. This glutamate-sensitizing activity, which accelerated by several days the onset of the response of cerebellar cultures to glutamate, was inhibited by actinomycin D and was not detectable in conditioned medium derived from confluent cultures of cerebellar astroglia, or from cell lines such as PC12, GT1-7, 3T3 and CHP 100. Glutamate-sensitizing activity was not mimicked by trilodo-L-thyronine, insulin-like growth factor-I (IGF-I), truncated IGF-I, GPE [a tripeptide (gly-pro-glu) derived from IGF-I], brain-derived neurotrophic factor (BDNF), basic fibroblast growth factor or tumour necrosis factor-alpha. However, IGF-I added to cultures of granule cells plated at high density and grown in basal medium Eagle's without serum or any other constituent of chemically defined media was capable of supporting production of glutamate-sensitizing activity to an extent similar to that shown by whole fetal calf serum. Under the same conditions triiodo-L-thyronine and BDNF did not support the production of glutamate-sensitizing activity. Glutamate-sensitizing activity was not mimicked by glutamate, NMDA, glycine or lactate, and was not inhibited by glucose, haemoglobin or N-omega-nitro-L-arginine methyl ester. At variance with the response of granule cells, the response to glutamate of GABAergic cells present in the same culture was not affected by cell density or by glutamate-sensitizing activity. 相似文献