首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
BACKGROUND: Allergy to mare's milk is rare. Recently, however, mare's milk has been recommended for treatment of various ailments by practitioners of "alternative medicine," and it is available in health food stores. OBJECTIVE: We report a case of allergic reaction to mare's milk in a 51-year-old woman who was able to tolerate cow's milk. METHODS: The protein composition of mare's milk was determined by methods based on measurement of nitrogen content. The patient underwent prick and intracutaneous tests with commercially available bovine milk proteins and several mare's milk preparations, including mare's milk granulate and boiled mare's milk. RAST and immunoblotting were also performed. RESULTS: Results of skin testing and RAST with cow's milk were negative but demonstrated an IgE-mediated allergy to mare's milk. Immunoblotting revealed two allergen bands with molecular weights of 16 and 18 kd, most likely representing the whey proteins alpha-lactalbumin and beta-lactoglobulin. The bands disappeared after the mare's milk was boiled, indicating that the proteins are heat-labile. CONCLUSION: The results of this study demonstrate the existence of an IgE-mediated mare's milk allergy caused by low molecular weight heat-labile proteins, most likely alpha-lactalbumin and beta-lactoglobulin, which do not cross-react with the corresponding whey proteins in cow's milk.  相似文献   

2.
The aim of the present investigation was to study the relationship between ascorbic acid status during the third trimester of pregnancy and levels of this vitamin in transition milk (days 13-14 of lactation) and mature milk (day 40 of lactation). To this end, the pregnancies and lactation periods of fifty-seven healthy women between 18 and 35 years of age (27 (SD 3.7) years) were monitored. Vitamin intake during the third trimester was determined by recording the consumption of foods over 5 d, and by registering the quantities provided by dietary supplements. Ascorbic acid levels in maternal serum during this stage of pregnancy, and in transition and mature milk samples, were determined by spectrophotometry. Those subjects with ascorbic acid intakes below that recommended (80 mg/d) (group L) showed lower consumption of fruit and vegetables than did those with greater intakes (group H). The consumption of ascorbic acid supplements was very low, and was only seen in three group H subjects. The difference in ascorbic acid intake was reflected at serum level. Group L subjects showed significantly lower serum values than did group H subjects (30.1 (SD 36.3) mumol/l compared with 101.1 (SD 168.1) mumol/l). Vitamin intake also influenced the composition of transition milk. Group L subjects showed significantly lower levels of ascorbic acid in milk than did group H subjects (255.5 (SD 220.3) mumol/l compared with 437.8 (SD 288.4) mumol/l). The results of the present study reveal the need to increase the consumption of fruits and vegetables during pregnancy and to monitor maternal ascorbic acid intake and vitamin C status.  相似文献   

3.
We have investigated the substrate specificity of the Ogg1 protein of Saccharomyces cerevisiae (yOgg1 protein) for excision of modified DNA bases from oxidatively damaged DNA substrates using gas chromatography/isotope dilution mass spectrometry. Four DNA substrates prepared by treatment with H2O2/Fe(III)-EDTA/ascorbic acid, H2O2/Cu(II) and gamma-irradiation under N2O or air were used. The results showed that 8-hydroxyguanine (8-OH-Gua) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) were efficiently excised from DNA exposed to ionizing radiation in the presence of N2O or air. On the other hand, 8-OH-Gua and FapyGua were not excised from H2O2/Fe(III)-EDTA/ascorbic acid-treated and H2O2/Cu(II)-treated DNA respectively. Fourteen other lesions, including the adenine lesions 8-hydroxyadenine and 4,6-diamino-5-formamidopyrimidine, were not excised from any of the DNA substrates. Kinetics of excision significantly depended on the nature of the damaged DNA substrates. The findings suggest that, in addition to 8-OH-Gua, FapyGua may also be a primary substrate of yOgg1 in cells. The results also show significant differences between the substrate specificities of yOgg1 protein and its functional analog Fpg protein in Escherichia coli.  相似文献   

4.
Active oxygen species or free radicals are considered to cause extensive oxidative damage to biological macromolecules, which brings about a variety of diseases as well as aging. The ideal scavenger for active oxygen should be 'active hydrogen'. 'Active hydrogen' can be produced in reduced water near the cathode during electrolysis of water. Reduced water exhibits high pH, low dissolved oxygen (DO), extremely high dissolved molecular hydrogen (DH), and extremely negative redox potential (RP) values. Strongly electrolyzed-reduced water, as well as ascorbic acid, (+)-catechin and tannic acid, completely scavenged O.-2 produced by the hypoxanthine-xanthine oxidase (HX-XOD) system in sodium phosphate buffer (pH 7.0). The superoxide dismutase (SOD)-like activity of reduced water is stable at 4 degrees C for over a month and was not lost even after neutralization, repeated freezing and melting, deflation with sonication, vigorous mixing, boiling, repeated filtration, or closed autoclaving, but was lost by opened autoclaving or by closed autoclaving in the presence of tungsten trioxide which efficiently adsorbs active atomic hydrogen. Water bubbled with hydrogen gas exhibited low DO, extremely high DH and extremely low RP values, as does reduced water, but it has no SOD-like activity. These results suggest that the SOD-like activity of reduced water is not due to the dissolved molecular hydrogen but due to the dissolved atomic hydrogen (active hydrogen). Although SOD accumulated H2O2 when added to the HX-XOD system, reduced water decreased the amount of H2O2 produced by XOD. Reduced water, as well as catalase and ascorbic acid, could directly scavenge H2O2. Reduce water suppresses single-strand breakage of DNA b active oxygen species produced by the Cu(II)-catalyzed oxidation of ascorbic acid in a dose-dependent manner, suggesting that reduced water can scavenge not only O2.- and H2O2, but also 1O2 and .OH.  相似文献   

5.
硫化法是目前冶炼污酸除砷应用最广泛的方法。常规硫化法采用阶梯式硫化、多级硫化、高效硫化反应器等工艺,或产出大量危废渣且后液不能回用只能排放,或成本高、流程长,或对高含砷污酸处理效果不理想。对含砷16 060 mg/L、铜28.04 mg/L、铅9.80 mg/L的高含砷污酸的除杂工艺进行研究,考察了硫化钠(Na2S?9H2O)加入量、加入方式及时间、反应温度等因素对除杂效果的影响,确定了“硫化+絮凝”的工艺,通过优化药剂加入方式从而减少药剂加入量,探索出了最佳工艺控制条件,达到“流程短、加药精准、污染小”的目的。结果表明,污酸中的砷可降至0.23 mg/L甚至<0.1 mg/L,铅、铜分别降至<0.1 mg/L,远低于工业硫酸一级品的限值。  相似文献   

6.
The resistance to 36 and 38 degrees C of isolated ciliated epithelium of the frog palate has been investigated, in relation to the following concentrations of some heavy metals in Ringer solution: 3CdSO4.8H2O (0.001-250.000 mg/l), CuSO4.5H2O (0.01-250.00 mg/l), Zn(NO3)2.6H2O (100-250 mg/l), Pb(NO3)2 (50-100 mg/l), Pb(CH3COO)2.3H2O (1-250 mg/l). In general, the epithelium heat resistance decreased as the concentration of heavy metal increased. The most toxic to the investigated object appeared Cd and Cu. A dependence was revealed between the toxicity of heavy metals and the testing temperatures.  相似文献   

7.
Orellanine is the tetrahydroxylated and di-N-oxidized bipyridine toxin extracted from several Cortinarius mushrooms among them C. orellanus. The pathogenic mechanism involved in the C. orellanus-poisoning by orellanine leading to kidney impairment is not yet fully understood until now. Electron spin resonance (ESR) spectroscopy has been used to study the activation of orellanine by horseradish peroxidase/H2O2 system at physiological pH. Evidence for a one-electron oxidation of the toxin by this enzymatic system to an ortho-semiquinone radical intermediate is presented. The orellanine ortho-semiquinone generated by the peroxidase/H2O2 system abstracts hydrogen from glutathione, generating the glutathionyl radical which is spin-trapped by 5,5'-dimethyl-1-pyrroline N-oxide (DMPO) and subsequently detected by ESR spectroscopy. Similarly, the ortho-semiquinone abstracts hydrogen from ascorbic acid to generate the ascorbyl radical which is detected by direct ESR. The peroxidatic oxidation of orellanine to semiquinone followed by its reduction by glutathione or ascorbic acid does not induce dioxygen uptake. The relationship between chemical structure and HRP oxidation of orellanine-related molecules, namely orelline and DHBPO2 (the parent molecule lacking of hydroxyl groups in 3 and 3' position) has been investigated in absence or in presence of reducing agents. None of the orellanine-related compounds can be oxidized by the HRP/H2O2 system, showing that both catecholic moieties and aminoxide groups are necessary for observing the formation of the ortho-semiquinone form of orellanine. As shown for the (photo)chemical oxidation of orellanine, the mechanism of toxicity could be correlated with a depletion of glutathione and ascorbate levels which are implicated in the defence against oxidative damage.  相似文献   

8.
Incubation of papain (EC 3.4.22.2) with ascorbic acid (AsA) and Cu2+ in acetate buffer (pH 5.6) results in an irreversible loss of enzyme activity by site-specific generation of free radicals [H. Kanazawa, S. Fujimoto, A. Ohara, Biol. Pharm.Bull., 16, 11 (1993)]. In this study, the effect of some compounds, known free radical scavengers, on the relationship between the inactivation of papain by the Cu(2+)-AsA system and the oxidation of AsA was investigated. Catalase completely protected the enzyme from inactivation by the Cu(2+)-AsA system, although hydrogen peroxide (H2O2) by itself, known to be generated during the autoxidation of AsA, did not inactivate the enzyme. The oxidation of AsA was unaffected by catalase. Both thiourea and sodium thiocyanate completely protected the enzyme from inactivation, while AsA was partially oxidized only in the initial stage. In the presence of potassium iodide, both the inactivation of the enzyme and the oxidation of AsA were characterized by a rapid initial phase followed by a stable phase where no reaction took place and, subsequently, a slower phase. Histidine partially prevented the inactivation of the enzyme and the oxidation of AsA. The present results suggest that H2O2 serves as a source of secondary, highly reactive species, probably hydroxyl radicals, which are responsible for the inactivation, and that the protection from inactivation by some radical scavengers, such as thiourea, sodium thiocyanate, potassium iodide, and histidine, is based on the removal of metal ions (Cu2+ or Cu+) at the specific site of inactivation.  相似文献   

9.
Ascorbic acid (CAS 50-81-7) might mediate cardioprotective effects by scavenging free oxygen radicals. The effects of exogenous ascorbic acid on acute myocardial ischemia (MI) was investigated in isolated electrically-driven rabbit hearts (Langendorff, constant pressure: 70 cm H2O, Tyrode solution, Ca2+ 1.8 mmol/l, 37 degrees C). Repetitive MI, separated by a reperfusion period of 50 min, was induced by coronary artery branch ligature and quantitated from epicardial NADH-fluorescence photography. Starting after a reperfusion period of 20 min, isolated hearts were treated with ascorbic acid (10(-5) or 10(-4) mol/l). Ascorbic acid had no significant influence on the left ventricular left ventricular pressure or the coronary flow (p > 0.05). Ascorbic acid had no significant effect on epicardial NADH-fluorescence area or intensity (p > 0.05). Free radical scavenging properties reported for ascorbic acid do not mediate cardioprotective effects at the concentrations used in isolated rabbit hearts.  相似文献   

10.
An integrated electrochemical oxidation process that utilizes electrokinetics (EK) to deliver the oxidant (5–10% hydrogen peroxide, H2O2) and chelant [40 mM of ethylenediaminetetraacetic acid (EDTA) or diethylenetriaminepentaacetic acid (DTPA)] or iron chelate (1.4 mM Fe-EDTA or Fe-DTPA) to oxidize polycyclic aromatic hydrocarbons (PAHs) in soils was investigated. Batch and bench-scale EK experiments were conducted using: (a) kaolin, a low permeability clayey soil, spiked with phenanthrene at 500 mg/kg, and (b) former manufactured gas plant (MGP) soil, a high buffering silty soil, contaminated by a variety of PAHs (1493 mg/kg). Batch experiments showed that chelant solutions dissolve native iron minerals to form soluble Fe-chelates that remain available even at higher pH conditions of soil for the Fenton-like oxidation of the PAHs. In EK experiments, a 5–10% H2O2 solution was delivered from the anode and a chelant solution or iron-chelate was delivered from the cathode. Preflushing of soil with 5% ethanol and ferrous sulfate (1.4 mM) prior to oxidant delivery was also investigated. An electric potential of 2 VDC/cm was applied in all tests to induce electroosmotic flow for 5–8 days for kaolin and 25 days for the MGP field soil. In the absence of any chelating agent, phenanthrene oxidation was catalyzed by native iron present in kaolin soil, and 49.8–82.3% of phenanthrene was oxidized by increasing H2O2 concentration from 5–10%. At 5% H2O2 concentration, phenanthrene oxidation was not increased by using 40 mM EDTA, 40 mM DTPA or 1.4 mM Fe-DTPA, but it increased to 70% using 1.4 mM Fe-EDTA. Maximum phenanthrene oxidation (90.5%) was observed by 5% ethanol preflushing and then treating with 5% H2O2 at the anode and 1.4 mM Fe-EDTA at the cathode. However, preflushing with 1.4 mM ferrous sulfate did not improve phenanthrene oxidation. The results with the MGP field soil indicated that delivery of 5% H2O2 alone resulted in oxidation of 39.8% of total PAHs (especially 2- and 3-ring PAHs). The use of EDTA and Fe-EDTA did not increase PAHs oxidation in this soil. Overall, the results reveal that an optimized in situ combined technology of EK and Fenton-like process has the potential to oxidize PAHs in low permeability and/or high buffering soils.  相似文献   

11.
The antioxidant activity of SB209995, a metabolite of carvedilol in human, was studied and compared with its parent compound, carvedilol. SB209995 or carvedilol inhibited iron-catalyzed lipid peroxidation assessed as thiobarbituric acid-reactive substance generated in brain homogenate with IC50s of 0.30 and 8.1 mumol/l, respectively. The oxidation of low-density lipoprotein (LDL) by macrophages or that initiated by Cu2+ ions was inhibited by SB209995 with IC50s of 59 nmol/l and 1.7 mumol/l, respectively. Under the same conditions, the IC50s of carvedilol were 3.8 and 17.1 mumol/l, respectively. Furthermore, SB209995 protected cultured endothelial cells against hydroxyl radical (OH.) or superoxide (O2-)-mediated lipid peroxidation and cytotoxicity, assessed as lactate dehydrogenase release and cell death. The results indicate that SB209995 is a more potent antioxidant than carvedilol and may contribute to the therapeutic effects of carvedilol.  相似文献   

12.
Mechanisms of superoxide.O2--generating systems on the pro-oxidant effect of iron from various sources were studied. Reaction mixtures were prepared with distilled water, oil emulsion, or meat homogenates. Free ionic iron (ferrous and ferric), ferritin and hemoglobin (Hb) were used as iron sources, and KO2 and xanthine oxidase (XOD) systems were used to produce .O2-. Thiobarbituric acid reactive substances (TBARS) values and iron contents of the reaction mixtures were determined. Ferric iron and ferritin, in the presence or absence of superoxide-generating systems, had no catalytic effect on the oxidation of oil emulsion but became pro-oxidants when reducing agent (ascorbate) was present. Ferrous iron and Hb had strong catalytic effects on the oxidation of oil emulsion as shown by TBARS values. Superoxide and H2O2, generated from superoxide-generating systems, oxidized ferrous iron and ascorbate, and lowered the pro-oxidant effect of ferrous iron in oil emulsion. Addition of ferric or ferrous iron increased but Hb did not have any effect on the TBARS values of raw meat homogenates. The reaction mechanisms of superoxide and the superoxide-generating systems on the prooxidant effect of various iron sources indicated that .O2- was a strong oxidizer rather than a reducing agent, and the antioxidant effect of XOD system in oil was caused by the oxidation of ferrous iron to the ferric form by .O2- and/or H2O2.  相似文献   

13.
Photocatalytic oxidation (PCO) is an advanced oxidation process that has recently been shown to be effective in the treatment of recalcitrant metal complexes, such as Cu(II)-ethylenediaminetetraacetic acid (EDTA). The PCO of Cu(II)-EDTA was studied to determine copper recovery and the reusability of the titanium dioxide (TiO2) photocatalyst. Aqueous solutions of Cu(II)-EDTA (10?4?M) were treated using illuminated TiO2. After PCO treatment, TiO2 was filtered and extracted with H2SO4 (0.1, 0.5, 1 N) to remove adsorbed copper. The recovered TiO2 catalyst was then reused in subsequent experiments. The recovered copper was concentrated in the extraction solution by a factor of 14.7 over that of the initial copper concentration. An additional experiment was performed using the same TiO2 without copper removal for eight consecutive PCO treatments. In both experiments, the initial rate of photocatalysis did not change significantly with reuse and was similar to that obtained from virgin TiO2 (5.6 μM/min). It is suggested that Cu(II)-EDTA could be effectively treated using an integrated cyclic procedure of PCO, catalyst recovery, and acid extraction for Cu recovery.  相似文献   

14.
Alkaline phosphatase, one of the enzymes responsible for the conversion of phosphocholine into choline, was purified from bovine brain membrane, where the phosphatase is bound as glycosylphosphatidylinositol-linked protein, and subjected to oxidative inactivation. The phosphatase activity, based on the hydrolysis of p-nitrophenyl phosphate and phosphocholine, decreased slightly after the exposure to H2O2. Inclusion of Cu2+ in the incubation with 1 mM H2O2 led to a rapid decrease of activity in a time- and concentration-dependent manner. In comparison, the H2O2/Cu2+ system was much more effective than the H2O2/Fe2+ system in inactivating brain phosphatase. In a further study, it was observed that the hydroxy radical scavengers mannitol, ethanol, or benzoate failed to prevent against H2O2/Cu2+-induced inactivation of the phosphatase, excluding the involvement of extraneous hydroxy radicals in metal-catalyzed oxidation. In addition, it was found that both substrates, p-nitrophenyl phosphate and phosphocholine, and an inhibitor, phosphate ion, at their saturating concentrations exhibited a remarkable, although incomplete, protection against the inactivating action of H2O2/Cu2+. A similar protection was also expressed by divalent metal ions such as Mg2+ or Mn2+. Separately, it was found that H2O2/Fe2+-induced inactivation was prevented by p-nitrophenyl phosphate or Mg2+ but not phosphate ions. Thus, it is implied that phosphocholine-hydrolyzing alkaline phosphatase in brain membrane might be one of enzymes susceptible to metal-catalyzed oxidation.  相似文献   

15.
The peroxidation of low density lipoprotein (LDL) may play an important role in the modification of the lipoprotein to an atherogenic form. The oxidation of LDL by peroxidases has recently been suggested as a model for in vivo transition metal ion-independent oxidation of LDL (Wieland, E., S. Parthasarathy, and D. Steinberg. 1993. Proc. Natl. Acad. Sci. USA. 90: 5929-5933). It is possible that in vivo the peroxidase activities of proteins, such as prostaglandin synthase and myeloperoxidase, promote LDL oxidation. We have used horseradish peroxidase (HRP) and H2O2 as a model of peroxidase-dependent oxidation of LDL and we observed the following during HRP/H2O2-initiated LDL oxidation. i) The oxidation of alpha-tocopherol occurred with the concomitant formation of alpha-tocopheroxyl radical. This was followed by the production of an apolipoprotein B (apoB)-derived radical. The apoB radical and the alpha-tocopheroxyl radical were formed under both aerobic and anaerobic conditions. ii) Inclusion of N-t-butyl-alpha-phenylnitrone (PBN) did not inhibit alpha-tocopheroxyl radical formation. The ESR spectrum of a PBN/LDL-lipid derived adduct was observed after prolonged incubation. iii) There was formation of conjugated dienes, lipid hydroperoxides and thiobarbituric acid reactive substances. Our data indicate that HRP/H2O2 oxidizes both alpha-tocopherol and apoB to the corresponding radicals and concomitantly initiates lipid peroxidation.  相似文献   

16.
Cu/Zn-superoxide dismutase (Cu/Zn-SOD) has been shown to modulate the autoxidation of a variety of phenoic compounds, including 1,4-hydroquinone (HQ), a benzene-derived metabolite. The acceleration of autoxidation of HQ by Cu/Zn-SOD results in the production of 1,4-benzoquinone (BQ). It has been proposed that the chemical mechanism involved in the Cu/Zn-SOD-catalyzed autoxidation of HQ may be occur through either its conventional activity as a superoxide:superoxide oxidoreductase or as a semiquinone:superoxide oxidoreductase. However, Cu/Zn-SOD-accelerated oxidation of HQ has not been resolved experimentally. In this study, with ESR spectroscopy we investigated further the chemical reactions involved in the SOD-accelerated oxidation of HQ. In phosphate-buffered saline (PSB), HQ underwent a slow autoxidation to BQ, which was accelerated by Cu/Zn-SOD, Mn-SOD, or Fe-SOD with similar efficiency. In contrast, among free metals, only Cu(II) strongly mediated the oxidation of HQ to BQ. Mn(II) exhibited a slight capacity to oxidize HQ, whereas neither FE(II) nor FE(III) was capable of modulating the autoxidation of HG. The presence of either form of SOD also dramatically enhanced the formation of semiquinone anion radicals SQ-. from HQ. The SOD-accelerated oxidation of HQ was also accompanied by the generation of H202. In PBS containing bovine serum albumin (BSA) (PBS/BSA), HQ did not undergo autoxidation to SQ-., and as such the presence of SOD was unable to induce the formation of either SQ-. or BQ or the consumption of O2. The addition of 10 microM BQ to HQ (100 or 1000 microM) in PBS/BSA resulted in the formation of SQ-. and initiated a slow rate of oxidation of HQ to BQ. In this case, the presence of Cu/Zn-SOD strongly accelerated the oxidation of HQ to SQ-. and BQ and the utilization of O2. Furthermore, the enhancement by Cu/Zn-SOD of the generation of SQ-. or BQ from HQ in PBS/BSA was extensively inhibited under anaerobic conditions. The enhancement of SQ-. generation from HQ by all three forms of SOD does not support the possibility that Cu/Zn-SOD can oxidize SQ-. to BQ. Taken together, this study demonstrates that unlike free copper, Cu/Zn-SOD does not directly interact with HQ to cause its oxidation to BQ. Rather, the autoxidation of HQ to SQ-. is a prerequisite for the enhancing capacity of Cu/Zn-SOD, and the dismutation of superoxide anion radicals generated from the SQ-. in the presence of O2 appears to be the underlying mechanism responsible for the enhancement by Cu/Zn-SOD of the oxidation of HQ.  相似文献   

17.
BACKGROUND: We have previously reported the finding of an acute increment in the susceptibility of low-density lipoprotein (LDL) to oxidation and in the proportion of electronegative LDL [LDL(-)] after intense exercise. We have now studied the effect of oral supplementation with 1 g ascorbic acid, immediately before a 4-h athletic race, on the susceptibility of LDL to oxidation, the proportion of LDL(-), and the alpha-tocopherol and lipid peroxides content in LDL, in order to inhibit such deleterious changes, and to confirm the oxidative nature of modifications of LDL induced by exercise. METHODS: We studied seven highly trained runners who received a supplement of 1 g ascorbic acid and a control group of seven who did not receive the supplement. The susceptibility of LDL to oxidation was assessed by measurement of conjugated dienes after CuSO4-induced oxidation, the proportion of LDL(-) was determined by anion exchange chromatography, alpha-tocopherol was quantified by reverse-phase high performance liquid chromatography, and lipid peroxides were measured by the thiobarbituric acid-reactive substances (TBARS) method. RESULTS: After exercise, in the control group there was an increase in both the susceptibility of LDL to oxidation (change in lag phase from 51.4 +/- 4.7 min to 47.0 +/- 4.6 min, P < 0.05) and the proportion of LDL(-) (from 11.1 +/- 1.4% to 13.0 +/- 2.2%, P < 0.05), but these did not occur in the ascorbic acid group (change in lag phase from 49.7 +/- 2.3 min to 50.4 +/- 4.2 min, and in LDL(-) from 9.7 +/- 1.7% to 10.1 +/- 1.7%). No significant changes in the absolute amount of LDL alpha-tocopherol were observed after exercise (ascorbic acid group: 6.65 +/- 0.94 mol/mol apoB before the race, 7.13 +/- 0.88 mol/mol apoB after the race; control group: 7.34 +/-0.69 mol/mol apoB before the race, 7.06 +/- 0.69 mol/mol apoB after the race), but significant differences were found when increments or decrements of alpha-tocopherol were tested (alpha-tocopherol increased 9.9 +/- 11.5% in the ascorbic acid group, and decreased 0.6 +/- 7.3% in the control group; P < 0.018). TBARS did not change after exercise. CONCLUSIONS: We conclude that 1 g ascorbic acid inhibits the increase in LDL susceptibility to oxidation after exercise, preventing this acute pro-atherogenic effect. In addition, the observation that LDL(-) enhancement is prevented by ascorbic acid supports the hypothesis that at least some of the circulating LDL(-) originates from oxidative processes.  相似文献   

18.
In this study, microcosm experiments were conducted to evaluate the effectiveness of (1) nutrients, hydrogen peroxide (H2O2), and cane molasses addition; (2) soil washing by biodegradable surfactant [Simple Green (SG)]; and (3) soil pretreatment by Fenton-like oxidation on the bioremediation of fuel-oil contaminated soils. The dominant native microorganisms in the fuel-oil contaminated soils after each treatment process were determined via polymerase chain reaction, denaturing gradient gel electrophoresis, and nucleotide sequence analysis. Results show that approximately 32 and 56% of total petroleum hydrocarbon (TPH) removal (initial concentration of 5,000?mg?kg?1) were observed in microcosms with the addition of nutrient and cane molasses (1,000?mg?L?1), respectively, compared to only 9% of TPH removal in live control microcosms under intrinsic conditions (without amendment) after 120 days of incubation. Addition of cane molasses would cause the increase in microbial population and thus enhance the TPH degradation rate. Results also show that approximately 61% of TPH removal was observed in microcosms with the addition of H2O2(100?mg?L?1) and nutrient after 120 days of incubation. This indicates that the addition of low concentration of H2O2(100?mg?L?1) would cause the desorption of TPH from soil particles and increase the dissolved oxygen and subsequent bioremediation efficiency in microcosms. Approximately 95 and 69% of TPH removal were observed in microcosms with SG (100?mg?L?1) and higher dose of H2O2(900?mg?L?1) addition, respectively. Moreover, significant increases in microbial populations were observed and two TPH biodegraders (Pseudomonas sp. and Shewanella sp.) might exist in microcosms with SG or H2O2 addition. This indicates that the commonly used soil remedial techniques, biodegradable surfactant flushing, and Fenton-like oxidation would improve the TPH removal efficiency and would not cause adverse effects on the following bioremediation process.  相似文献   

19.
Developmental profiles of antioxidant enzymes and lipid peroxidation were investigated in rat cerebral hemisphere from birth to 600 days of age. Lipid peroxidation level decreased in the crude homogenate from birth until 15 days and, thereafter increased gradually up to 600 days. However, susceptibility of sub-cellular fractions to lipid peroxidation displayed an increasing trend with increasing age. Superoxide dismutase activity decreased gradually with age, whereas activities of catalase, glutathione peroxidase and glutathione reductase exhibited an elevation up to 90 days followed by either a stagnancy or diminution in the later life. No linearity was observed in the contents of glutathione, ascorbic acid and H2O2 in the tissue. The results suggest that free radicals could be the causative agents of the aging process in which antioxidant enzymes have a definite regulatory contribution.  相似文献   

20.
The effects of marine omega-3 polyunsaturated fatty acids (FAs) and antioxidants on the oxidative modification of LDL were studied in a randomized, double-blind, placebo-controlled trial. Male smokers (n = 41) with combined hyperlipidemia were allocated to one of four groups receiving supplementation with omega-3 FAs (5 g eicosapentaenoic acid and docosahexaenoic acid per day), antioxidants (75 mg vitamin E, 150 mg vitamin C, 15 mg beta-carotene, and 30 mg coenzyme Q10 per day), both omega-3 FAs and antioxidants, or control oils. LDL and human mononuclear cells were isolated from the patients at baseline and after 6 weeks of supplementation. LDL was subjected to cell-mediated oxidation by the patients' own mononuclear cells, as well as to Cu(2+)-catalyzed and 2,2'-azobis-(2-amidinopropane hydrochloride) (AAPH)-initiated oxidation. Extent of LDL modification was measured as lag time, the formation rate of conjugated dienes (CDs), the maximum amount of CDs formed, formation of lipid peroxides, and the relative electrophoretic mobility of LDL on agarose gels. Dietary supplementation with omega-3 FAs increased the concentration of total omega-3 FAs in LDL and reduced the concentration of vitamin E in serum. The omega-3 FA-enriched LDL particles were not more susceptible to Cu(2+)-catalyzed, AAPH-initiated, or autologous cell-mediated oxidation than control LDL. In fact, enrichment with omega-3 FAs significantly reduced the formation rate of CDs when LDL was subjected to AAPH-induced oxidation. Supplementation with moderate amounts of antioxidants significantly increased the concentration of vitamin E in serum and increased the resistance of LDL to undergo Cu(2+)-catalyzed oxidation, measured as increased lag time, reduced formation of lipid peroxides, and reduced relative electrophoretic mobility compared with control LDL. Supplementation with omega-3 FAs/antioxidants showed oxidizability of LDL similar to that of control LDL and omega-3 FA-enriched LDL. In conclusion, omega-3 FAs neither rendered the LDL particles more susceptible to undergo in vitro oxidation nor influenced mononuclear cells' ability to oxidize autologous LDL, whereas moderate amounts of antioxidants protected LDL against oxidative modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号