共查询到18条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
5.
6.
7.
靛酚蓝-分光光度法测定发酵液中氨态氮含量研究 总被引:10,自引:1,他引:10
靛酚蓝-分光光度法是一种灵敏度高,对设备要求简单,线性相关性好,重现性高的氨态氮检测方法。文中对该方法的检测波长、反应温度、时间以及催化剂浓度等条件进行了优化,确定了检测波长为637 nm,反应条件为37℃、25 mg/L的催化剂和20 min的反应时间,并由此得到一条线性相关系数为0.999 6的氨态氮标准曲线。同时,对靛酚蓝法用于普通发酵体系测定氨态氮进行了探讨。对常用发酵基质如碳源、氮源、金属离子以及消泡剂等进行了考察,结果发现这些常用基质基本不影响本法的测定结果。最后,将该法用于泰乐菌素和阿维菌素的发酵液测定并与离子选择电极法进行了比较,两种方法的测定结果无显著性差异,由此证明该方法是一种准确可靠,切实可行的检测发酵液中氨态氮的方法。 相似文献
8.
分光光度法测定乳与乳制品中硫氰酸钠的含量 总被引:2,自引:0,他引:2
研究了硫酸铁铵分光光度法测定乳与乳制品中硫氰酸钠的含量.方法:样品加三氯乙酸溶液和双氧水溶液置60℃水浴进行蛋白沉淀后,过滤,取滤液加硝酸酸化,再用硫酸铁铵溶液进行显色,在465nm处测定其吸光值,用标准曲线法测其含量.结果:本方法的线性范围为1.00mg/L~20.0mg/L,以吸光值0.02作为检出限,则液体的检出限为3mg/L、固体的检出限为6mg/kg,奶粉和鲜奶的相对标准偏差分别为3.80%和2.43%,本方法回收率在98.6%~99.7%之间.检测结果与离子色谱法检测结果比较的相对偏差均在10%以内.鉴于显色稳定性,方法要求标准溶液和样品溶液显色后分别在15min和30min内完成检测.本方法具有操作简便,结果准确等优点,对乳与乳制品中硫氰酸钠的控制具有重要意义.因本方法使用的紫外分光光度仪非常普及,很适合在广大中小企业推广. 相似文献
9.
10.
目的:建立了分光光度法定量检测葡萄酒中尿素含量的方法。方法:采用强阳性离子交换树脂柱对葡萄酒中尿素进行分离,依据费伦反应原理,采用分光光度法测定洗脱液中尿素含量。结果:建立方法的最佳参数为丁二酮单肟最佳添加量6.0g/L,氨基硫脲最佳添加量0.10g/L,反应中煮沸时间为5min,用分光光度计在530nm波长下测定吸光度。方法的最低检出限0.5mg/L,相对标准偏差为3.1%~4.4%,回收率为92.8%~103.1%。结论:此方法简便快速、准确可靠,适合用于葡萄酒样品中尿素含量的定量检测。 相似文献
11.
高效液相色谱法测定传统发酵乳中的有机酸组成 总被引:7,自引:0,他引:7
利用高效液相色谱(HPLC)法研究了传统发酵乳中的7种有机酸的分离测定条件,同时对青海省传统发酵乳酸牦牛奶、酸山羊奶和酸马奶等40个样品的乳酸、乙酸和柠檬酸含量进行了测定。结果表明,选择浓度为0.010 mol/L磷酸—磷酸二氢钠(pH=2.0)和甲醇(体积比为98︰2)做流动相,流速为0.5 mL/min,紫外检测波长为210 nm时可以较好地分离测定发酵乳中的乳酸、乙酸和柠檬酸。该方法不仅相对标准偏差小(0.35%~1.23%),回收率高(95.4%~103.8%),线性相关系数高(乳酸r>0.99994,醋酸r>0.99997,柠檬酸r>0.99999),而且具有较高的准确度和精确度;通过发酵乳样品的有机酸含量测定发现,发酵乳中除主要含有乳酸外还有微量的乙酸、柠檬酸和痕量的甲酸、苹果酸、琥珀酸及丙酸。3种家畜奶发酵乳中各种有机酸含量有较大差别。 相似文献
12.
13.
14.
15.
利用传统酸牛乳酒(Kefir)的发酵剂—开菲尔粒(Kefir Grains)制作的发酵剂,对榛子乳与牛乳的混合原料进行发酵,采用L16(45)正交试验设计筛选制备开菲尔榛子乳的最佳发酵条件。结果表明:当榛子乳与鲜牛乳混合比例8∶2,接种量为3%,发酵温度25℃,加糖量10%,发酵时间14 h时,所得的产品的酸度为83°T,乙醇体积分数为0.26%,风味柔和,口感独特。 相似文献
16.
《Journal of dairy science》2022,105(4):2771-2790
Fermented brown milk has gained popularity because of its unique taste and flavor. Lactobacillus bulgaricus ND02 is a starter culture that has good milk fermentation characteristics. This study aimed to profile the metabolites produced during Maillard browning and to identify metabolomic differences between fermented brown milk and fermented milk produced by the ND02 strain. This study used liquid chromatography–mass spectrometry to compare the metabolomes of milk, fermented milk, brown milk, and fermented brown milk. Significant differences were observed in the abundances of various groups of metabolites, including peptides, AA, aldehydes, ketones, organic acids, vitamins, and nucleosides. The Maillard browning reaction significantly increased the intensity of a wide spectrum of flavor compounds, including short peptides, organic acids, and compounds of aldehydes, ketones, sulfur, and furan, which might together contribute to the unique flavor of brown milk. However, Maillard browning led to an increase in Nε-(carboxymethyl)lysine, which might cause negative health effects such as diabetes, uremia, or Alzheimer's disease. On the other hand, fermenting brown milk with the ND02 strain effectively countered such an effect. Finally, 5 differentially abundant metabolites were identified between fermented brown milk and fermented milk, including l-lysine, methylglyoxal, glyoxal, 2,3-pentanedione, and 3-hydroxybutanoic acid, which might together contribute to the different nutritional qualities of fermented brown milk and fermented milk. This study has provided novel information about the Maillard reaction and compared the metabolomes of the 4 types of dairy products. 相似文献
17.