首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sub-micron fibers of pure polyaniline (PANI) doped with sulfuric acid or hydrochloric acid were prepared by electrospinning PANI with suitable molecular weight dissolved in hot sulfuric acid. A modified electrospinning setup was employed with a coagulation bath as a collector, where dilute sulfuric acid was used as coagulation bath. The factors influencing the morphology and conductivity of the synthesized PANI fibers were investigated, including the concentration of dilute H2SO4 solution in the coagulation bath, the doped PANI concentration in H2SO4 solution, the type of doping acid and the voltage applied to the solution. The morphologies of doped PANI fibers were characterized by scanning electron microscope (SEM). The structure of the resulting fibers was analyzed by Fourier transform infrared spectroscopy and UV–vis spectrometer. The conductivity of PANI fibers were characterized by IV characteristics. Homogeneous PANI fibers with a diameter of 370 nm and a high conductivity of 52.9 S/cm were prepared. The possible mechanisms of different morphology formation and conductivity of PANI fibers were also discussed.  相似文献   

2.
Urea (CO(NH2)2) and its related compounds (biuret: NH(CONH2)2 and cyanuric acid: (CONH)3) were mixed with phosphoric acid (H3PO4) and neodymium oxide (Nd2O3). The thermal behavior of these dried mixtures was estimated by differential thermal analyses, X-ray diffraction, and Fourier-transform infrared spectroscopy. Furthermore, specific surface area of phosphates was calculated by BET method using nitrogen adsorption. The addition of urea prevented the crystal growth of Monazite-type NdPO4 in samples at P/Nd = 2 heated at 450 and 550 °C, and promoted the dehydration–condensation reaction of phosphate. Urea was considered to be decomposed at 400–450 °C in these systems. The decomposition of urea was considered to be related to the formation of neodymium dihydrogenphosphate and then this phosphate transformed to neodymium polyphosphate. The ratio of urea and phosphorus had influence on the promotion of the dehydration–condensation reaction. Thermal behavior of sample added with biuret or cyanuric acid was also investigated.  相似文献   

3.
The present study attempts to clean up nitric oxide from the simulated flue gas using aqueous chlorine-dioxide solution in the bubbling reactor. Chlorine-dioxide is generated by chloride–chlorate process. Experiments are carried out to examine the effect of various operating variables like input NO concentration, presence of SO2, pH of the solution and NaCl feeding rate on the NOx removal efficiency at 45 °C. Complete oxidation of nitric oxide into nitrogen dioxide occurred on passing sufficient ClO2 gas into the scrubbing solution. NO is finally converted into nitrate and ClO2 is reduced into chloride ions. A plausible reaction mechanism concerning NOx removal by ClO2 is suggested. DeNOx efficiency increased slightly with the increasing input NO concentration. The presence of SO2 improved the NO2 absorption but pH of solution showed marginal effect on NO2 absorption. NOx removal mechanism changed when medium of solution changed from acidic to alkaline. A constant NOx removal efficiency of about 60% has been achieved in the wide pH range of 3–11 under optimized conditions.  相似文献   

4.
Fe3+-doped nanostructured TiO2 thin films with antibacterial activity were prepared on soda–lime–silica glass slides by using sol–gel technology. Water containing Escherichia coli K-12 with TiO2 thin films in was exposed to low intensity fluorescent light and antibacterial efficiency was evaluated with spread plate techniques. The films are porous and have anatase phase. Iron ions increased luminous energy utilization as the absorption edge of the Fe3+-doped film has a red shift compared to that of the pure TiO2 film in the UV–VIS absorption spectrum. The bacterial removal efficiency reached 95% at the optimum concentration of iron ion (about 0.5% (mol)) after 120 min irradiation. The antibacterial behavior of the doped TiO2 films was explicitly observed using scanning electron microscopy and cell wall damage was found.  相似文献   

5.
On one hand, cyanided tailings are one kind of pollutants. On the other hand, they contain a lot of valuable elements. So utilization of them can bring social and environmental benefits. In this paper, cyanided tailings were used to prepare nano-iron oxide red pigment powders by an ammonia process with urea as precipitant. At first, cyanided tailings were oxidized by nitric acid. Then, the oxidizing mixture was separated into solid and liquid parts. The liquid mixture was reduced by scrap iron and the impurity of it was removed by use of NH3·H2O. Then, the seed crystal of γ-FeOOH was obtained, when the pure liquid reacted with ammonia liquid at the selected experimental conditions. At last, nano-iron oxide red pigment powders were prepared. The structure, morphology and size distribution of seed crystal and iron oxide red were characterized systematically by means of X-ray diffraction (XRD), transmission electron microscope (TEM) and laser particle size analyzer (LPSA). The results revealed that typical iron oxide nanoparticles were -Fe2O3 with particle size of 50–70 nm. Furthermore, the factors that affected the hue and quality of the seed crystal and iron oxide red pigment were also discussed.  相似文献   

6.
Aqueous solution-based synthesis of rare earth-doped metal oxide thin films   总被引:1,自引:0,他引:1  
Rare earth-doped TiO2 thin films have been successfully formed on glass and Si wafer substrates from aqueous solution through equilibrium reaction between metal–fluoro complex and metal oxide, in which Ln3+–ethylenediaminetetraacetic acid (EDTA) complex (Ln: rare earth metal) was added into the reaction solution. Ln/Ti ratio and crystalline structure of the film could be controlled by varying the initial concentration of Ln3+–EDTA complex solution. The obtained Ln-doped films were densely-packed and had no cracks.  相似文献   

7.
Ti–6Al–4V (Ti64) sheet specimens were cathodically hydrogenated in sulfuric acid solution at ambient conditions. The hydrogenated specimens were then sent to go through the designed thermohydrogen processing (THP) twice to obtain a nano-sized grain structure. The average grain size of resulted microstructure was found to be 10–20 nm obtained by TEM. Qualitative and quantitative analyses performed by employing X-ray diffractometry (XRD) and elemental analysis (EA) showed that the addition of As2O3 as hydrogenation promoter in electrolyte significantly increased the hydrogen uptake. The high concentration of hydrogen arising from promoter action is the key factor in grain refinement. The optimal processing parameter found for grain-refining Ti64 was: (1) electrolytic hydrogenation at 100 mA cm−2 for 3 h in 1 N H2SO4(aq) by adding 0.1 g L−1 As2O3; (2) β transformation carried out at 850 °C for 1 h in air furnace, followed by a furnace cooling to 590 °C and held for 6 h; (3) oxide film removed and then dehydrogenated at 650 °C and 1.0 × 10−6 Torr for 10 h; (4) repeated the same processes once more.  相似文献   

8.
以赤藓糖醇为原料,利用绿色硝化剂五氧化二氮(N2O5)在硝酸(HNO3)介质中硝解制得1,2,3,4-丁四醇四硝酸酯(ETN)。与现有混酸法相比,该反应可在无硫酸(H2SO4)环境下进行,后处理简单,废酸污染小。试验探讨了投料比、反应温度和反应时间对ETN产率的影响,用扫描电镜SEM、红外光谱IR等对不同ETN晶体的形态进行了表征。结果表明,投料比m(赤藓糖醇):m(N2O5):V(HNO3)=2.5 g :4.0 g :20.0 mL、反应温度为20 ℃、反应时间为2 h时,ETN的产率最高,达76.6%。同时,3种不同晶体形态的ETN具有相同的特征峰。  相似文献   

9.
When elemental Ti and B powders were added to molten Al at above 1000°C, fine in situ TiB2 particulates were formed through Al–Ti–B exothermic reaction. By optimising the nucleation of TiB2, the tensile and yield strengths of a synthesised Al–15Vf%TiBs composite were twice that of matrix material. Modification of Al-matrix with 4.5 wt%Cu tripled the tensile and yield strengths at peak-aged condition. Owing to the co-presence of brittle Al3Ti flakes with TiB2 particles in the composites synthesised by the Al–Ti–B system, ductility was reduced to 68% and 84% in composites with Al- and Al–Cu matrices, respectively. When the (Ti + B) mixture was incorporated with 3 wt%C, TiB2 and TiC reinforcing phases were simultaneously produced in the composite with Al–Cu matrix. Such an approach reduced Al3Ti compound in the composite considerably. Although the presence of Cu in the composite was found to promote the formation of Al3Ti, its effect on the fluidity caused the melt recovery to increase from 33% to 52%.  相似文献   

10.
The mediated electrochemical oxidation (MEO) process with cerium(IV) and nitric acid as the oxidizing medium was employed for the destruction of various model organic pollutants in continuous organic feeding mode. A near complete destruction was observed for all the organics studied. The effects of various experimental conditions were evaluated with respect to EDTA mineralization. The key parameters varied in the process were concentration of EDTA (67–268 mM), temperature (70, 80 and 95 °C), concentrations of Ce(IV) (0.7, 0.8 and 0.95 M), nitric acid (2, 3 and 4 M) and duration of organic addition (30 and 120 min). Under the experimental conditions of 80 °C and 0.95 M Ce(IV) in 3 M nitric acid, nearly 90% destruction was achieved based on CO2 production and 95% based on TOC analyses for all the organic compounds studied. The in situ regeneration of mediator ion by the electrochemical cell was found to be good during the organic destruction within the range of experimental conditions studied. In the case of long term organic feeding (120 min) the destruction was calculated after the CO2 evolution attained the steady state and under this condition the destruction efficiency was found to be 85% based on CO2 evolution.  相似文献   

11.
The objective of the present study was to generate submicrometer calcium hydroxide aerosols and to investigate the effectiveness of such aerosols in sulfur capture. The effectiveness of SO2 removal by Ca(OH)2 aerosol has been investigated in an isothermal reactor. Ca(OH) 2 aerosol was generated by a novel fluidizer system in which submicrometer-sized powders were entrained in gases. SO2 was added to this aerosol to a concentration of 2000 ppm. The aerosol-SO2 mixture was heated to 550°C-750°C in an isothermal tube reactor. The SO2 removal efficiency, which varied from 20% to 70%, was determined to be a function of the aerosol concentration, reactor temperature and residence time. The fraction of aerosol reacted was not affected strongly by the aerosol concentration. The reaction kinetics were determined from the experimental data using a simple analytical model in which the rate is first order in both SO2 and calcium hydroxide aerosol concentrations.  相似文献   

12.
Polyaniline (PANI) salts doped with inorganic acids (HCl, H2SO4 and H3PO4) were directly synthesized by using solid-state polymerization method. The FTIR spectra, UV–vis absorption spectra and X-ray diffraction patterns were used to characterize the molecular structures of the PANI salts. Voltammetric study was done to investigate the electrochemical behaviors of all these PANI salts. The PANI salts were affected by varying the protonation media (HCl, H2SO4 and H3PO4). The FTIR and UV–vis absorption spectra revealed that all PANI salts contained the conducting emeraldine salt phase at different oxidation state. The crystallinity of PANI doped with HCl was better than those doped with H2SO4 and H3PO4. The conductivity of the PANI doped with HCl is the highest among the inorganic acid doped PANI.  相似文献   

13.
Synthesis of AlN by reactive sputtering   总被引:2,自引:0,他引:2  
We present a systematic study of the sub-band gap optical absorption coefficients (hν) in the range 1.2–6 eV vs. deposition-temperature (Ts from 27 to 450°C) films deposited on silica by 13.6 MHz magnetron sputtering of an Al target with 53 and 72% N2 in the reactive mixture. X-ray diffraction, infrared absorption and Raman diffusion are also presented, mainly on films deposited on Si in the same run to help in the characterisation of the films. All signals are specific of AlN polycrystalline films, which are of better quality when deposited with 72% N2. The lowest sub-band gap optical absorption around 5×102 cm−1 is obtained for deposition on silica at Ts=300°C with 72% N2 and is close to that of heteroepitaxial films deposited on sapphire.  相似文献   

14.
To understand the mechanism determining the over long response time of porous alumina humidity sensors, the study of the interaction between water and the anodic alumina was begun by determining the adsorbed water concentration at room temperature and pressure of the most utilized alumina—the sulfuric porous anodic alumina. The adsorbed water concentration in a dissociated state can be estimated as 100 OH nm−2, a constant value in a large domain of preparation conditions: 8.4–27 wt.% sulfuric acid concentration, +10 to −15 °C, and 40–400 A m−2 anodic current density.  相似文献   

15.
The growth structure of MgF2 and NdF3 films grown on polished CaF2(111) substrates deposited by molecular beam deposition has been investigated using transmission electron microscopy (TEM) of microfractographical and surface replications as well as cross-sectional TEM, atomic force microscopy, packing density, and absorption measurements. It has been shown that by taking advantage of ultrahigh vacuum environments and a special stratification property of MgF2 and NdF3 films, the preparation of nanocrystalline films of high packing density and low optical absorption is possible at a substrate temperature of 425 K.  相似文献   

16.
Rare earth ion (Nd3+, Er3+ and Tb3+)-doped alumina films were prepared by the sol–gel method using aqueous alumina sol. The effects of dopant concentration and treatment temperature on the optical properties, absorption and emission were examined for the doped films. Alumina films prepared by this method gave a high dopant concentration (0–15 mol% per alumina). Significant concentration quenching did not occur in this concentration range. The emissions from 5D3 and 5D4 of Tb3+-doped film reflected sensitively a matrix environment around Tb3+ ions. Er3+- and Nd3+-doped alumina films resonantly excited by cw Ti–sapphire laser (800 nm) showed upconversion emission at room temperature. The former gave 548 nm (4S3/24I15/2) and 640 nm (4F9/24I11/2) signals, and the latter 640 nm (4G7/24I11/2), which were dependent on alumina.  相似文献   

17.
Ba2Ti9O20 was synthesized by Pechini method using citric acid as a chelating agent and ethylene glycol as an esterification agent. The effects, of the pH of the starting solutions and the molar ratio of citric acid to total metal cations concentration on the formation of Ba2Ti9O20, were investigated. Increasing the pH of the starting solutions enhances the formation of Ba2Ti9O20, but the increase of the molar ratio of citric acid to total metal cations concentration retards the formation of Ba2Ti9O20 due to increased diffusion distances. Single-phase Ba2Ti9O20 was obtained at 1200 °C for 4 h when the molar ratio of citric acid to total metal cations concentration was unity, regardless of the pH of the starting solutions. Increasing the molar ratio of citric acid to total metal cations concentration up to 2, single-phase Ba2Ti9O2 was synthesized at 1200 °C for 6 h for the precursors with pH 3.5 and 6, but not for the precursors with pH 2.0. DTA, TG, XRD, FT–IR spectroscopy and Raman spectroscopy were used to characterize the precursors and the derived oxide powders. Details of the synthesis and characterizations of the resultant products were given.  相似文献   

18.
A cloud point extraction procedure was presented for the preconcentration of copper, nickel and cobalt ions in various samples. After complexation with methyl-2-pyridylketone oxime (MPKO) in basic medium, analyte ions are quantitatively extracted to the phase rich in Triton X-114 following centrifugation. 1.0 mol L−1 HNO3 nitric acid in methanol was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The adopted concentrations for MPKO, Triton X-114 and HNO3, bath temperature, centrifuge rate and time were optimized. Detection limits (3 SDb/m) of 1.6, 2.1 and 1.9 ng mL−1 for Cu2+, Co2+ and Ni2+ along with preconcentration factors of 30 and for these ions and enrichment factor of 65, 58 and 67 for Cu2+, Ni2+ and Co2+, respectively. The high efficiency of cloud point extraction to carry out the determination of analytes in complex matrices was demonstrated. The proposed procedure was applied to the analysis of biological, natural and wastewater, soil and blood samples.  相似文献   

19.
This paper describes a comparison between ultraviolet (UV) spectrophotometric and high-performance liquid chromatographic (HPLC) methods of analysis for the determination of sorbic acid in nonionic creams containing lactic acid. Sorbic acid is an antimycotic agent and is used as a preservative in pharmaceuticals, cosmetics, and food products. UV spectrophotometric analysis was done by calculating the concentration of remaining sorbic acid from the absorbance values and the molar extinction coefficient E258M = 24,080. A decrease in absorbance at 258 nm was accompanied by a simultaneous increase in total carbonyls and monoaldehyde content and the appearance of a very weak absorption maximum between 215 and 225 nm. HPLC analysis was done with a Hypersil BDS C8 column with detection at 254 nm and employing a mobile phase consisting of a mixture of buffer and methanol (7:3 v/v) at a pH of 2.25. The buffer consisted of 0.85% H2SO4 in 17.5 mM KH2PO4. The validation results, together with statistical treatment of the data, demonstrated the reliability of both procedures. A drawback of the UV methods was, however, its lack of adequate measurement of sorbic acid stability at higher temperatures. For these assays, the HPLC method was found to be adequate, and it should therefore be used to obtain accurate stability data for sorbic acid in creams.  相似文献   

20.
Hydroxyapatite (HA) has been synthesised in presence of 10–30 wt.% of m-ZrO2 by solid state reaction between tricalcium phosphate (TCP) and Ca(OH)2 at 1000 °C for 8 h. The m-ZrO2 was partly converted into t-ZrO2 by partial consumption of CaO which in turn resulted in a mixture of β-TCP and HA. On sintering these HA–β-TCP–ZrO2 composite powders at 1100–1400 °C for 2 h, the HA is further decomposed into β-TCP and CaO. The CaO so produced reacts further with m-ZrO2/t-ZrO2 generating a mixture of t-ZrO2 and CaZrO3 in different proportions. These various phases formed interfere with the sinterability of the composites due to their differential shrinkages leading to a overall reduced density as compared to that of pure HA. The composites show a T-onset of decomposition at around 1150 °C and a 40% HA yield was obtained at the highest sintering temperature of 1400 °C. The products were subjected to XRD for phase analysis and the microstructural features were studied by SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号