首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The layered LiNi0.6Co0.2Mn0.2–yMgyO2–zFz (0≤y≤0.12, 0≤z≤0.08) cathode materials were synthesized by combining co-precipitation method and high temperature solid-state reaction, with the help of the ball milling, to investigate the effects of F–Mg doping on LiNi0.6Co0.2Mn0.2O2. Compared with previous studies, this doping treatment provides substantially improved electrochemical performance in terms of initial coulombic efficiency and cycle performance. The LiNi0.6Co0.2Mn0.11Mg0.09O1.96F0.04 electrode delivers an high capacity retention of 98.6% during the first cycle and a discharge capacity of 189.7 mA·h/g (2.8–4.4 V at 0.2C), with the capacity retention of 96.3% after 100 cycles. And electrochemical impedance spectroscopy(EIS) results show that Mg–F co-doping decreases the charge-transfer resistance and enhances the reaction kinetics, which is considered to be the major factor for higher rate performance. It is demonstrated that LiNi0.6Co0.2Mn0.11Mg0.09O1.96F0.04 is a promising cathode material for lithium-ion batteries for excellent electrochemical properties.  相似文献   

2.
Using oxalic acid and stoichiometrically mixed solution of NiCl2, CoCl2, and MnCl2 as starting materials, the triple oxalate precursor of nickel, cobalt, and manganese was synthesized by liquid-phase co-precipitation method. And then the LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion battery were prepared from the precursor and LiOH-H2O by solid-state reaction. The precursor and LiNi1/3Co1/3Mn1/3O2 were characterized by chemical analysis, XRD, EDX, SEM and TG-DTA. The results show that the composition of precursor is Ni1/3Co1/3Mn1/3C2O4·2H2O. The product LiNi1/3Co1/3Mn1/3O2, in which nickel, cobalt and manganese are uniformly distributed, is well crystallized with a-NaFeO2 layered structure. Sintering temperature has a remarkable influence on the electrochemical performance of obtained samples. LiNi1/3Co1/3Mn1/3O2 synthesized at 900 ℃ has the best electrochemical properties. At 0.1C rate, its first specific discharge capacity is 159.7 mA·h/g in the voltage range of 2.75-4.30 V and 196.9 mA·h/g in the voltage range of 2.75-4.50 V; at 2C rate, its specific discharge capacity is 121.8 mA·h/g and still 119.7 mA·h/g after 40 cycles. The capacity retention ratio is 98.27%.  相似文献   

3.
采用4种不同的锂盐(LiOH.H2O、Li2CO3、LiNO3、CH3COOLi),以高温固相法制备了LiNi0.8Co0.1Mn0.1O2正极材料。利用X射线粉末衍射(XRD)和场发射电子显微镜(FESEM)对所制LiNi0.8Co0.1Mn0.1O2材料的微观结构进行了表征,发现所有合成的LiNi0.8Co0.1Mn0.1O2样品尺寸均为微米级大小,具有层状结构(R-3m空间群)。电化学测试结果表明采用不同锂源制备的LiNi0.8Co0.1Mn0.1O2样品的电化学性能差别很大。其中采用LiOH?H2O为锂源,经500 °C预烧结6 h后,在800 °C下烧结16 h获得的样品锂镍混排程度最低,电化学性能最佳。例如,在0.1 C(1 C=180 mA/g)倍率下其可逆比容量高达206.2 mA.h/g,在10 C大倍率下,其可逆比容量仍保持有80.9 mA.h/g;在0.5 C倍率下100次充放电循环过程中,最高放电比容量为176.2 mA.h/g,平均放电比容量为140.1 mA.h/g。动力学及电极稳定性分析发现,LiOH?H2O制备的样品的电化学可逆性最好,Li+扩散系数最大,充放电循环过程中结构稳定性最好。  相似文献   

4.
A series of layered LiNi0.8–xCo0.1Mn0.1LaxO2 (x=0, 0.01, 0.03) cathode materials were synthesized by combining co-precipitation and high temperature solid state reaction to investigate the effect of La-doping on LiNi0.8Co0.1Mn0.1O2. A new phase La2Li0.5Co0.5O4 was observed by XRD, and the content of the new phase could be determined by Retiveld refinement and calculation. The cycle stability of the material is obviously increased from 74.3% to 95.2% after La-doping, while the initial capacity exhibits a decline trend from 202 mA·h/g to 192 mA·h/g. The enhanced cycle stability comes from both of the decrease of impurity and the protection of newly formed La2Li0.5Co0.5O4, which prevents the electrolytic corrosion to the active material. The CV measurement confirms that La-doped material exhibits better reversibility compared with the pristine material.  相似文献   

5.
The uniform layered Li(Ni2/8Co3/8Mn3/8)O2, Li(Ni3/8Co2/8Mn3/8)O2, and Li(Ni3/8Co3/8Mn2/8)O2 cathode materials for lithium ion batteries were prepared using the hydroxide co-precipitation method. The effects of calcination temperature and transition metal contents on the structure and electrochemical properties of the Li-Ni-Co-Mn-O were systemically studied. The results of XRD and electrochemical performance measurement show that the ideal preparation conditions were to prepare the Li(Ni3/8Co3/8Mn2/8)O2 cathode material calcined at 900°C for 10 h. The well-ordered Li(Ni3/8Co3/8Mn2/8)O2 synthesized under the optimal conditions has the I 003/I 104 ratio of 1.25 and the R value of 0.48 and delivers the initial discharge capacity of 172.9 mA·h·g−1, the discharge capacity of 166.2 mA·h·g−1 after 20 cycles at 0.2C rate, and the impedance of 558 Ω after the first cycle. The decrease of Ni content results in the decrease of discharge capacity and the bad cycling performance of the Li-Ni-Co-Mn-O cathode materials, but the decreases of Mn content and Co content to a certain extent can improve the electrochemical properties of the Li-Ni-Co-Mn-O cathode materials.  相似文献   

6.
The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/3O2 were 950°C for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.  相似文献   

7.
采用共沉淀法制备均相Al掺杂的LiNi0.5Co0.2Mn0.3O2正极材料,以利用Al对再生镍钴锰(NCM)正极材料的正面改性作用,并改善锂离子电池回收过程中繁琐和高成本的除杂过程.当浸出液中的Al3+含量为过渡金属(Ni、Co和Mn)总量的1%(摩尔分数)时,制备的Al掺杂NCM正极材料中晶格氧和Ni2+的浓度增加...  相似文献   

8.
In order to confirm the optimal Li content of Li-rich Mn-based cathode materials (a fixed mole ratio of Mn to Ni to Co is 0.6:0.2:0.2), Li1+x(Mn0.6Ni0.2Co0.2)1-xO2 (x=0, 0.1, 0.2, 0.3) composites were obtained, which had a typical layered structure with and C2/m space group observed from X-ray powder diffraction (XRD). Electron microscopy micrograph (SEM) reveals that the particle sizes in the range of 0.4-1.1 μm increase with an increase of x value. Li1.2(Mn0.6Ni0.2Co0.2)0.8O2 sample delivers a larger initial discharge capacity of 275.7 mA·h/g at the current density of 20 mA/g in the potential range of 2.0–4.8 V, while Li1.1(Mn0.6Ni0.2Co0.2)0.9O2 shows a better cycle performance with a capacity retention of 93.8% at 0.2C after 50 cycles, showing better reaction kinetics of lithium ion insertion and extraction.  相似文献   

9.
In order to improve the cycle and rate performance of LiNi0.5Mn1.5O4, LiCr2YNi0.5–YMn1.5–YO4 (0≤Y≤0.15) particles were synthesized by the sucrose-aided combustion method. The effects of Cr doping in LiNi0.5Mn1.5O4 on the structures and electrochemical properties were investigated. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge-discharge test and electrochemical impedance spectrum (EIS). The results indicate that the LiCr2YNi0.5–YMn1.5–YO4 possess a spinel structure and small particle size, and LiCr0.2Ni0.4Mn1.4O4 exhibits the best cyclic and rate performance. It can deliver discharge capacities of 143 and 104 mA·h/g at 1C and 10C, respectively, with good capacity retention of 96.5% at 1C after 50 cycles.  相似文献   

10.
采用溶胶-凝胶法合成锂离子电池正极材料Li1.2(Mn0.54Ni0.16Co0.08)O2,并用Al F3对这种材料进行表面包覆改性。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨率透射电子显微镜(HRTEM)等表征材料的结构和形貌。结果表明,合成的Li1.2(Mn0.54Ni0.16Co0.08)O2具有典型的层状α-Na Fe O2结构,AlF3均匀包覆在Li1.2(Mn0.54Ni0.16Co0.08)O2材料表面,包覆层厚度为5~7 nm。电化学测试表明,包覆Al F3后材料的电化学性能得到提高,在1C倍率下,包覆的AlF3材料的首次放电容量为208.2 m A·h/g,50次循环后容量保持率为72.4%,而未包覆AlF3的材料的首次放电容量和容量保持率分别为191.7 m A·h/g和51.6%。  相似文献   

11.
Layered LiNi1/3Co1/3Mn1/3O2 was synthesized by co-precipitation method, and a series of polypyrrole–LiNi1/3Co1/3Mn1/3O2 composites were then prepared by polymerizing pyrrole monomers on the surface of LiNi1/3Co1/3Mn1/3O2. The bare sample and composites were subjected to analysis and characterization by the techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical properties of the composites were investigated with galvanostatic charge–discharge test and AC impedance measurements, which show that the formed coats of polypyrrole (PPy) significantly decrease the charge-transfer resistance of LiNi1/3Co1/3Mn1/3O2. And the composite containing 2.0 wt% PPy exhibits a good electrochemical performance, its specific discharge capacity is 182 mAh g?1 at 0.1C rate and voltage limits of 2.8–4.6 V, while the capacity of the bare sample is only 134 mAh g?1.  相似文献   

12.
Cr 2 O 3-coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials were synthesized by a novel method. The structure and electrochemical properties of prepared cathode materials were measured using X-ray diffraction (XRD), scanning electron microscopy (SEM), charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The measured results indicate that surface coating with 1.0 wt% Cr 2 O 3 does not affect the LiNi 1/3 Co 1/3 Mn 1/3 O 2 crystal structure (α-NaFeO 2 ) of the cathode material compared to the pristine material, the surfaces of LiNi 1/3 Co 1/3 Mn 1/3 O 2 samples are covered with Cr 2 O 3 well, and the LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with Cr 2 O 3 has better electrochemical performance under a high cutoff voltage of 4.5 V. Moreover, at room temperature, the initial discharging capacity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with 1.0 wt.% Cr 2 O 3 at 0.5C reaches 169 mAh·g 1 and the capacity retention is 83.1% after 30 cycles, while that of the bare LiNi 1/3 Co 1/3 Mn 1/3 O 2 is only 160.8 mAh·g 1 and 72.5%. Finally, the coated samples are found to display the improved electrochemical performance, which is mainly attributed to the suppression of the charge-transfer resistance at the interface between the cathode and the electrolyte.  相似文献   

13.
To inhibit rapid capacity attenuation of Bi2Mn4O10 anode material in high-energy lithium-ion batteries, a novel high-purity anode composite material Bi2Mn4O10/ECP-N (ECP-N: N-doped Ketjen black) was prepared via an uncomplicated ball milling method. The as-synthesized Bi2Mn4O10/ECP-N composite demonstrated a great reversible specific capacity of 576.2 mA·h/g after 100 cycles at 0.2C with a large capacity retention of 75%. However, the capacity retention of individual Bi2Mn4O10 was only 27%. Even at 3C, a superior rate capacity of 236.1 mA·h/g was retained. Those remarkable electrochemical performances could give the credit to the introduction of ECP-N, which not only effectively improves the specific surface area to buffer volume expansion and enhances conductivity and wettability of composites but also accelerates the ion transfer and the reversible conversion reaction.  相似文献   

14.
Spherical Li(Ni_(1/3)Mn_(1/3)Co_(1/3))O_2 was prepared via the homogenous precursors produced by solution spray-drying method. The precursors were sintered at different temperatures between 600 and 1 000 ℃ for 10 h. The impacts of different sintering temperatures on the structure and electrochemical performances of Li(Ni_(1/3)Mn_(1/3)Co_(1/3))O_2 were compared by means of X-ray diffractometry(XRD), scanning electron microscopy(SEM), and charge/discharge test as cathode materials for lithium ion batteries. The experimental results show that the spherical morphology of the spray-dried powers maintains during the subsequent heat treatment and the specific capacity increases with rising sintering temperature. When the sintering temperature rises up to 900 ℃ , Li(Ni_(1/3)Mn_(1/3)Co_(1/3))O_2 attains a reversible capacity of 153 mA·h/g between 3.00 and 4.35 V at 0.2C rate with excellent cyclability.  相似文献   

15.
以Li2CO3、Mn2O3、Co2O3及LiF为原料,采用高温固相法合成了掺F的Li1.03Co0.10Mn1.90FzO4?z锂电池正极材料。通过离子发射光谱(ICP)和电位分析法确定了材料的化学组成,用X-射线衍射(XRD)、扫描电子显微镜(SEM)和电化学测试仪分析了 F 掺杂量对材料结构、形貌和电池性能的影响。结果表明,掺 F 的Li1.03Co0.10Mn1.90FzO4?z正极材料为尖晶石结构,在F掺入量z≤0.10时,随着掺杂量的增加晶胞参数逐渐增加,当F掺杂量继续增加时,晶胞参数的增幅有所减小。适量的F?与金属离子Li+、Co+的复合掺杂提高了材料的放电比容量,同时增强了材料结构的稳定性。电化学性能测试表明,Li1.03Co0.10Mn1.90F0.15O3.85的首次放电比容量达到111.0 mA·h/g,0.2C倍率下30次循环后容量保持率为97.0%。  相似文献   

16.
采用油包水微乳液法再经煅烧制备分级ZnMn2O4/Mn3O4复合亚微米棒.ZnMn2O4/Mn3O4电极在550次连续放电/充电循环中,在500 mA/g充放电电流条件下,其比容量从440 mA·h/g增加到910 mA·h/g,并在100 mA/g下提供1276 mA·h/g的超高比容量,远高于ZnMn2O4或Mn3...  相似文献   

17.
In this paper, ZrO2-coated LiNi1/3Mn1/3Co1/3O2 is successfully prepared by the microwave pyrolysis method. The structure and electrochemical properties of the ZrO2-coated LiNi1/3Co1/3Mn1/3O2 are investigated using x-ray diffraction, AC impedance, and charge/discharge tests, indicating that the lattice structure of LiNi1/3Co1/3Mn1/3O2 is unchanged after the coating but the cycling stability is improved. As the coating amount is 2 wt.%, initial capacity of the coated LiNi1/3Co1/3Mn1/3O2 decreases slightly. However, the cycling stability increases remarkably over the cut-off voltages of 2.75~4.3 V and the capacity retention reaches 93.1% after 50 cycles. Electrochemical impedance spectra results show that the increase of charge transfer resistance during cycling is suppressed significantly by coating with ZrO2.  相似文献   

18.
LiNi1/3Co1/3Mn1/3O2 cathode material was surface-treated to improve its electrochemical performance. Al2O3 nanoparticles were coated onto the surface of LiNi1/3Co1/3Mn1/3O2 powder using a sol-gel method. The as-prepared Al2O3 nano-particle was identified as the cubic structure of Al2O3. XRD showed that the LiNi1/3Co1/3Mn1/3O2 structure was not affected by the Al2O3 coating. With a coating of 3 wt.% Al2O3 on LiNi1/3Co1/3Mn1/3O2, the cyclic-life performance and rate capability were improved. However, heavier coatings (5 wt.%) on LiNi1/3Co1/3Mn1/3O2 resulted in a considerable decrease of the discharge capacity and rate capability. The thermal stability of LiNi1/3Co1/3Mn1/3O2 materials was greatly improved by the 3 wt.% Al2O3 coating.  相似文献   

19.
The electrochemical properties of spinel compound LiNi0.5Mn1.2Ti0.3O4 were investigated in this study.The chemicals LiAc·2H2O,Mn(Ac)2·2H2O,Ni(Ac)2·4H2O,and Ti(OCH3)4 were used to synthesize LiNi0.5Mn1.2Ti0.3O4 by a simple sol-gel method.The discharge capacity of the sample reached 134 mAh/g at a current rate of 0.1C.The first and fifth cycle voltammogram almost overlapped,which showed that the prepared sample LiNi0.5Mn1.2Ti0.3O4 had excellent good cycle performance.There were two oxidation peaks at 4.21 V and 4.86 V,and two reduction peaks at 4.55 V and 3.88 V in the cycle voltammogram,respectively.By electrochemical impedance spectroscopy and its fitted result,the lithium ion diffusion coefficient was measured to be approximately 7.76 × 10?11 cm2/s.  相似文献   

20.
The core-shell structure cathode material Li(Ni0.8Co0.15Al0.05)0.8(Ni0.5Mn0.5)0.2O2 (LNCANMO) was synthesized via a co-precipitation method. Its applicability as a cathode material for lithium ion batteries was investigated. The core-shell particle consists of LiNi0.8Co0.15Al0.05O2 (LNCAO) as the core and a LiNi0.5Mn0.5O2 as the shell. The thickness of the LiNi0.5Mn0.5O2 layer is approximately 1.25 μm, as estimated by field emission scanning electron microscopy (FE-SEM). The cycling behavior between 2.8 and 4.3 V at a current rate of 18 mA g−1 shows a reversible capacity of about 195 mAh g−1 with little capacity loss after 50 cycles. High-rate capability testing shows that even at a rate of 5 C, a stable capacity of approximately 127 mAh g−1 is retained. In contrast, the capacity of LNCAO rapidly decreases in cyclic and high rate tests. The observed higher current rate capability and cycle stability of LNCANMO can be attributed to the lower impedance including charge transfer resistance and surface film resistance. Differential scanning calorimetry (DSC) indicates that LNCANMO had a much improved oxygen evolution onset temperature of approximately 251 °C, and a much lower level of exothermic-heat release compared to LNCAO. The improved thermal stability of the LNCANMO can be ascribed to the thermally stable outer shell of LiNi0.5Mn0.5O2, which suppresses oxygen release from the host lattice and not directly come into contact with the electrolyte solution. In particular, LNCANMO is shown to exhibit improved electrochemical performance and is a safe material for use as an electrode for lithium ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号