首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《低温学》2002,42(6-7):377-382
We are developing Bi-2223/Ag tapes with a high engineering critical current density by optimizing the powder-in-tube process and are studying its application to coil and current leads. We have fabricated 250 m-long tape and investigated optimized processing conditions to enhance engineering critical current density. More bubbling was found when the tape was heat-treated with a higher heating rate. Different kinds of superconducting joints were fabricated with multi-filamentary Bi-2223/Ag tapes, and 58% of retained Ic was achieved using the insertion of Bi-2223 core between two exposed tapes. Current decay property of the persistent mode HTS coil was investigated. Rapid current decay was observed when the operating current is in a flux-flow range. We could successfully fabricate a low heat leak type HTS current lead with Bi-2223/Ag–Au tapes by employing a stepped geometry. Using this lead, safe operation of 2 kA current transport was confirmed.  相似文献   

2.
For the endurance evaluation of High Temperature Superconductors (HTS), the mechanical and transport properties of multifilamentary Bi2Sr2Ca2Cu3O10+x (Bi-2223) superconducting tapes with different reinforcements subjected to high-cycle axial fatigue loading were investigated at 77 K in the self-field. The mechanical fatigue limits based on the relations between the applied stress amplitude and the numbers of cyclic steps to reach failure (S-Nf curves) were obtained. The transport properties were evaluated with the increase of repeated cycles, N, at different applied stress amplitudes which eventually leads to the electric fatigue limit. The influence of reinforcement on the mechanical and transport properties of Bi-2223 tapes were discussed. Fractographic observation was performed in order to understand the Ic degradation mechanism in fatigue tested Bi-2223 tapes.  相似文献   

3.
Electroplastic rolling (EPR) of Bi-2223/Ag superconducting wires was performed, where pulse currents were applied during rolling to introduce an electroplastic effect. It was found that the rolling force decreased significantly compared with the traditional rolling process. Furthermore, EPR favorably minimized the sausage effect. It is revealed that the electroplastic effect can facilitate the mechanical deformation of Bi-2223/Ag composites. Segments of the Bi-2223/Ag tapes were heat treated at 830 °C for different time periods. The phase assemblies of these samples suggest that current pulses contribute to faster transformation kinetics from the Bi-2212 phase to the Bi-2223 phase. In addition, a preliminary improvement of 28% of critical current density has been achieved in a fully processed tape with EPR.  相似文献   

4.
High-T c superconducting joints between Ag-clad Bi-2223 tapes have been developed for persistent current applications. Two presintered tapes with one side of the silver stripped were lapped and then wrapped by a silver foil. The complex was uniaxially pressed followed by appropriate sintering to form a high-T c superconducting tape joint. It was found that the ratio of critical currents through the joint to that of the tape,I cj/Ic, depended on the uniaxial pressure and the sintering conduction. At liquid-nitrogen temperature 77 K,I cj/Ic=99% has been achieved. Persistent current loops formed by Bi-2223 tapes have also been fabricated and tested. Joint resistance of a loop was determined to be ~4×10?13 Ω between the decay time of 120 and 3600 sec.  相似文献   

5.
This paper summarizes the experimental investigations on the critical current of two jointed Bi-2223/Ag superconducting tapes connected by Sn63Ag2Pb solder. Different lap lengths of contact surface were studied. The joint resistance was measured to be in the range of 0.059??0.76????, and the critical current of the jointed Bi-2223/Ag HTS tapes was measured with different charging rates using standard four-point-method in a zero-applied magnetic field applying 1 ??V/cm criterion. The experimental results showed that the longer the lap length was, the smaller the joint resistance was and the nearer the critical current approached that of Bi-2223/Ag superconducting short-sample. On the other hand, the critical current decreased with the increasing of the charging rate.  相似文献   

6.
10-meter-long Ag?CNi bimetallic sheathed (Bi,Pb)-2223 tapes with outer nickel sheath and inner silver sheath have been successfully fabricated by the ??Powder in tube?? technique. Microstructure and phase evolution studies by means of SEM and XRD, as well as critical current density (J c ) measurements have been performed. It is found that the nickel sheath and dwell time in the first sintering process have great influences on the texture evolution, phase transformation and J c of the Bi-2223/Ag/Ni tapes. Mono-filament (Bi,Pb)-2223 tape with a J c of 6656?A?cm?2 and 61-filament tape with a J c of 12420?A?cm?2 are obtained. Although using composite bimetallic sheaths can reduce production costs and improve mechanical properties of the Bi-2223 tapes, the Bi-2223 content and J c of Bi-2223/Ag/Ni tapes are relatively lower than that of traditional Bi-2223/Ag tapes. Meanwhile, due to higher Bi-2223 content and better alignment of Bi-2223 grains, tapes with 61-filament have higher J c than mono-filament tapes.  相似文献   

7.
The influence of green tape thickness on the Bi-2223 phase formation and texture evolution in Ag/Ni composite-sheathed tapes fabricated by the “powder-in-tube” technique has been studied. Microstructural observations by SEM as well as critical current density (J c) measurements at 77 K, 0 T have been performed to analyze the performance of the tapes. The results show an important influence of the green tape thickness on the critical current depending on the content and texture of Bi-2223 phase. The J c increases with decreasing thickness. Moreover, texture measured by omega scans shows that the texture of the Bi-2223 phase is significantly influenced by the thickness of the green tape after the first and final sintering processes. Alignment of Bi-2223 grains in the thin tapes is much better. Higher performance of Ag/Ni composite-sheathed Bi-2223 tapes can be obtained by controlling the thickness of the green tapes.  相似文献   

8.
We have developed Bi-2212 and 2223 tapes. For Bi-2212, two double stacked pancake type coils were fabricated using Bi-2212/Ag tapes prepared by a combination of the continuous dip-coating process and melt-solidification. A small coil (13 mm inner bore, 46.5 mm outer diameter) was inserted in a conventional superconducting magnet system. In a bias field of 20.9 T, the generated field of the coil was 0.9 T, at an Ic of 310 A (criterion 10−13 Ωm) at 1.8 K. Thus, the superconducting magnet system achieved the generation of a field of 21.8 T in the full superconducting state. A large coil (20 mm inner bore, 94 mm outer diameter) generated a field of 2.6 T (Ic = 385 A (10−13 Ωm)) at 4.2 K and 1.53 T (Ic = 225 A (10−13Ωm)) at 20 K in self-field. For Bi-2223, tapes were prepared by the powder-in-tube technique using Ag-10% Cu-x%M (x = 0–1.0, M = Ti, Zr, Hf or Au) alloy sheaths. The high Jc values of 5–7 × 104 A cm−2 at 4.2 K and 14 T were obtained for the tapes doped with x = 0.03–0.1 at.% Ti, 0.1 at.% Zr, 0.1 at.% Hf or 0.3% Au. These tapes have a modified Bi-2223 grain structure at the sheath/core interface and also a dense and more aligned microstructure, resulting in higher Jc values.  相似文献   

9.
A double pancake coil was designed and manufactured with a 36-m long Bi-2223/Ag tape. The tape was insulated by 25 μm thick Kapton tapes, which can stand a voltage of 400 Vrms in liquid nitrogen. The whole double pancake was impregnated with epoxy resin. AC over-current experiments of the coil were performed by applying constant AC voltages to the two terminals of the coil and lasted for 3 s. The experiment began first at a lower voltage of 33.6 Vrms, and then the voltage stepped up till the coil was burned out at the pulse voltage of 202.7 Vrms. All of the experiments were carried out with the coil dipped in liquid nitrogen. The current waveforms were measured. The impedance and resistance characters of the HTS coil with its over pulse currents were analyzed from the experiment results. At the end of this paper, some conclusions derived from the experiment results and their analyses are given, which are helpful for the safety operating of the HTS coils in power applications.  相似文献   

10.
We performed systematic current-voltage measurements (IV curves) in Ag—added the polycrystalline Y1Ba2Cu3O7?x sample (YBCO/Ag) as a function of the transport current (I), temperature (T), external magnetic field (H), and sweeping rates (dI/dt). Standard and reverse procedures were used in the measurements of IV curves. The obtained results were compared to IV curves of the YBCO and polycrystalline sample of MgB2. Upon cycling transport current, the IV curves of the YBCO/Ag sample exhibit hysteresis effects for both procedures and are sensitive to the variation of dI/dt. The experimental data reveal that the irreversibilities in the IV curves of YBCO are more prominent than those of YBCO/Ag. Furthermore, there are no considerable hysteresis effects in the IV curve of MgB2 and this behavior is attributed to the absence of the weak-link structure in MgB2. We suggest that the physical origin of the rather small hysteresis effects in the IV curves of the YBCO/Ag sample can be related to the destruction of weak-link structure due to the addition of Ag into the superconducting matrix. Ag destroys partly the intergranular pinning properties of the YBCO ceramic by increasing grain coupling and, therefore, the irreversibilities in the IV curves of the YBCO/Ag decrease considerably. The instabilities and short- and long-lived plateau regions observed in IV curves were explained in terms of plastic flow of flux lines along easy motion channels, which are considered mainly as metallic silver paths in the YBCO/Ag sample. At moderate dissipation levels, we could not observe any difference between the data obtained by using the standard and reverse procedures. This suggests that the surface effects are also weakened by the addition of Ag into the superconducting structure.  相似文献   

11.
To improve on present critical current (J c) performance, multifilamentary Ag/Bi-2223 tapes with a large range of reduction rates were manufactured. The relative core mass density D was calculated, dependent on the measured geometric dimensions of the tapes. Experimental results, D vs. J c, D vs. maximum pinning force density F max , and D vs. irreversible magnetic field B irr, are quantitatively formatted. In particular, the magnetic field dependence of J c is critically dependent on its core density. If the core density increases by 10%, J c of the tapes in this experiment is enhanced by as much as 100%. Therefore, in the present state of the technological process for manufacturing Ag/Bi-2223 tape, increasing the core density is clearly a significant strategy in improving the electronic and magnetic properties of the tapes and enhancing the capacity for carrying current at high magnetic fields. The limit of the bulk self-field-J c can be calculated by the relationships of J c vs. D. The limit is estimated to be on the order of 200 kA/cm2 for multifilamentary Bi-2223 tapes, which was supported by magneto-optical (MO) magnetization measurements results. It is a hard task to approach this limit with the present state of the art in manufacturing Ag/Bi-2223 tape, and it is the time to suggest some new ideals for Bi-2223 tapes to promote large-scale applications.  相似文献   

12.
Multifilamentary HTSC tapes are important for their applications in various electrical devices. Powder-in-tube technique with improved optimized synthesis parameters is regarded as one of the most promising ways to prepare long-length multifilamentary Bi-2223/Ag tapes. Nevertheless, usefulness of such tapes depends on their electrical and mechanical properties. Critical current density of a Bi-2223/Ag tape with 37 filaments has been studied at 77 K with field, field orientation, thermal cycling and bending strain as parameters. Results have been discussed in light of various mechanisms and models. A small pancake coil has been fabricated out of the same tape and the test results presented.  相似文献   

13.
Shinichi Ishiguri 《低温学》2012,52(7-9):416-419
To improve the performance of a high-temperature superconducting (HTS) coil, it is important to improve its transport current performance. In general, the critical current and n-value of an HTS (Bi-2223/Ag) tape depend on the applied magnetic fields and the angle between the magnetic field and the tape under a constant temperature. The critical currents in the coil edge of the tapes are particularly low because of the distribution of the magnetic fields. However, the critical currents in the central portion remain high. A large amount of current can be supplied to the central portion and the coil performance will improve by supplying different currents between these areas. In this study, I propose an HTS coil in which the coil edge and central portion are isolated for each excitation. Namely, I employ the characteristics of the persistent current mode. The analysis of varying regions of current separation confirmed an optimum current separation. This optimized coil improves the central magnetic field by 21% and the stored energy by 50% compared to those of a normal rectangular coil with an HTS tape of the same length.  相似文献   

14.
The mechanical performance at cryogenic temperature and the degradation mechanism of electric behaviors of Bi-2222/Ag tapes with different protective layers as well as their contradiction laws are discussed. A variable temperature cryostat system is constructed to provide the successive cooling environment from room temperature (RT) to the liquid nitrogen temperature (LNT), and a cryogenic-type extensometer is also used to measure strain behavior of the superconducting tapes. And, the effects of bending strain on the critical current of Bi-2222/Ag tapes with different protective layer were measured using arched abrasives with different radius. Experimented results have shown that the protective layer of the tapes could have strong positive effects on the measured mechanical performance at room temperature and cryogenic temperature. The irreversible degradation on strain indicates that the I c reduction is caused mainly by crack formation and propagation in the brittle Bi-2222/Ag tapes. In particular, the degradation mechanism of multifilamentary sample with protective layer was also elaborated, and protective layer has some negative effect on electric behaviors. In addition, the behaviors of the n value with strains on standard Bi2222/Ag tape was also argued to predict the damage process in Bi-2222 tapes indirectly during bending tests.  相似文献   

15.
High-T c superconducting joints between Ag-clad Bi-2223 tapes have been developed for persistent current applications. Two presintered tapes with one side of the silver stripped were lapped and then wrapped by a silver foil. The complex was uniaxially pressed followed by appropriate sintering to form a high-T c superconducting tape joint. It was found that the ratio of critical currents through the joint to that of the tape,I cj/Ic, depended on the uniaxial pressure and the sintering conduction. At liquid-nitrogen temperature 77 K,I cj/Ic=99% has been achieved. Persistent current loops formed by Bi-2223 tapes have also been fabricated and tested. Joint resistance of a loop was determined to be 4×10–13 between the decay time of 120 and 3600 sec.  相似文献   

16.
Thirty-seven-filamentary AgAu-sheathed Bi-2223 tapes were fabricated by a powder-in-tube (PIT) process. And, the round wires (? 1.86 mm) were rolled to 0.35-mm tapes with 12, 7, 5, and 4 rolling passes through flat rolling, respectively. The influences of different rolling passes on the core density, deformation, and transport properties of Bi-2223/AgAu tapes were systematically investigated. It was noticed that after rolling, the Vickers microhardness of the superconducting core and deform homogeneity along both the horizontal and vertical directions on the cross section of seven-pass rolled tape were better than those on the tapes with other passes, which proved the larger core density and uniform deformation with the seven-pass rolling process. Meanwhile for the wires with 12 and 7 passes, the AgAu/superconducting core interfaces were much flatter. With the rolling passes decreasing from 12 to 4, the critical current density (Jc) first increased and then decreased. Due to the better homogeneity and flatter interfaces, Jc reached the maximum value of 17.3 kA/cm2 on the seven-pass sample. Meanwhile, the enhancement of current capacities in magnetic field applied parallel to the Bi-2223/AgAu tape surface could also be recognized as the evidence of improving intergrain connections due to the higher density in seven-pass rolled tapes.  相似文献   

17.
The magnetovoltage measurements (VH curves) with different sweeping rates (dH/dt) of the external magnetic field in Ag-added polycrystalline YBa2Cu3O7?x sample (YBCO/Ag) were investigated. The measurements of VH curves were carried out as functions of the transport current (I) and temperature (T). Upon cycling H, all VH curves measured for different values of I exhibit a clockwise hysteresis effects in forward region. The hysteresis effects in the VH curve were interpreted in terms of two-level magnetic system, which considers the superposition of the external magnetic field and the local magnetic fields in the intergrain boundaries induced by magnetic dipole moment of neighbor superconducting grains. The analysis of magnetovoltage data showed that the flux trapping in the junction network has a negligible effect on the evolution of the VH curves and the irreversibilities arise mainly from the flux trapping inside the grains. It is shown that the width of VH curves shows a universal scaling behavior with respect to the applied current below the critical temperature T c . The comparison of VH curves of the YBCO/Ag sample with those of YBCO shows that adding Ag to the superconducting structure weakens the pinning properties of Josephson medium and provokes the instabilities in measured dissipation. The presence of Ag in the superconducting matrix causes marked decrease in hysteresis effects and makes the VH curves dH/dt dependent. At high values of dH/dt, the instabilities and plateau regions in VH curves increase significantly as compared to those of observed in YBCO. In addition, the interrelation between the evolution of VH curves obtained for different values of I and the critical current I c was demonstrated experimentally.  相似文献   

18.
The stress–strain properties of Bi-2223 tapes directly relate to its applications, but have not been systematically studied yet. Three tapes sheathed by Ag and Ag alloys were manufactured for the study of stress–strain. X-ray diffraction analyses were used to determine the amorphous and Bi-2223 phases for the three tapes before and after sintering. Tensile experiments were performed to study the stress–strain properties as well. Micro-morphologies of the three tapes were observed and recorded by scanning electron microscopy. The experimental results show green tapes with a linear stress–strain relation. It is suggested that this relation comes from the sheathed metal’s properties. The mechanical properties of Ag/Mg sheathed tapes are like those of a rigid body, which do not present plasticity and elasticity. The phenomena of outgrowth and bridges were observed in Ag and Ag/Sb sheathed tapes. Also, Ag and Ag/Sb sheathed tapes showed abnormal stress–strain properties, which were subjected to micro-cracks existing in the sheathed metals and imperfections of Bi-2223 crystals.  相似文献   

19.
The superconducting Bi1.6Pb0.4Sr2Ca2Cu3?x W x O10+y (x=0.00, 0.05, 0.10, 0.15) bulk samples were prepared by the solid-state reaction method. The effects of W substitution on the BSCCO system have been investigated by the electrical resistivity (ρ-T), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), magnetic hysteresis and critical current density measurements. It has been found that the Bi-(2212) low-T C phase is formed for all the substitution levels, together with the Bi-(2223) high-T C phase. The results obtained from the XRD data show that the Bi-(2223) phase gradually transforms into the Bi-(2212) phase with increasing W substituting for Cu. In addition, from the magnetization measurements at the temperatures below the zero resistance temperatures of the samples, we have observed that a decreasing in magnitude of |M| with the increasing measurement temperature and W concentration. Therefore, the decreasing of |M| related to superconducting volume seems to imply an existence of flux-pinning centers in our samples.  相似文献   

20.
《低温学》2003,43(10-11):549-553
Bi-2223/Ag tapes with different lead content (Pb=0.2–0.4) powders were fabricated. The microstructural development and Jc properties were studied with starting precursor powder prepared in different conditions. The experimental results indicate that the variations of lead content extremely influence the reactivity of precursor powders, which is closely related to the formation rate of 2223 phase, microstructure and Jc values of Bi-2223/Ag tapes. In addition, the particle size distribution of precursor powders has a large effect on the transport properties. By optimizing these powder parameters, Jc values above 60,000 A/cm2 (77 K, 0 T) in short tapes were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号