首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four types of stainless steel coatings prepared by a high velocity oxy-fuel spraying system (HVOF) were studied. Differences among coated steels were related to the spraying parameters, which influenced the behavior of the samples against the corrosion. The electrochemical behavior of the stainless steel coatings was strongly influenced by porosity, the presence of micro- and macro-cracks, and also of un-melted particles. Once the electrolyte reached the steel substrate via these defects, the galvanic pair formed between the coating and substrate-accelerated corrosion, leading to the depletion of the coating.  相似文献   

2.
The mixtures of hydrochloric acid and hydrogen peroxide were employed as the environmental friendly pickling solution for 430 hot-rolled stainless steel in this study. Increase of HCl concentration accelerates the corrosion rate of base metal, however aggravates the intergranular attack in sole hydrochloric acid solution. Addition of oxidant (H2O2) boosts the corrosion potential of stainless steel significantly resulting in the change of electrode action. At high oxidant content (0.6?mol?l?1 H2O2), a corrosion product film accumulates onto the surface and the corrosion is then governed by the mass-transport at the film/stainless steel interface. The random dissolving of metal ions because of the film leads to brightening of stainless steel surface and the local corrosion is suppressed.  相似文献   

3.
4.
5.
6.
A novel antibacterial stainless steel (ASS) with martenstic microstructure has been recently developed, by controlled copper ion implantation, as a new functional material having broad-spectrum antibacterial properties. The electrochemical corrosion behavior of the ASS in 0.05 mol/L NaCl was assessed using linear polarization and electrochemical impedance spectroscopy (EIS) and compared with that of a conventional stainless steel (SS) without copper ion implantation. The ASS exhibited higher corrosion susceptibility in the chloride medium; with a more negative (active) corrosion potential, higher anodic current density and lower charge transfer and polarization resistance. This has been attributed to the occurrence of copper-catalyzed interfacial reactions. A functional tool, 3-D presentation of EIS data, has been employed in analyzing the electrochemical corrosion processes as well as probing complex interfacial phenomena.  相似文献   

7.
In this study, tri-cation phosphate coating of zinc, calcium and iron was applied electrochemically to stainless steel 316 substrates. Cathodic current was used as an accelerator for the phosphating process. The effects of current density on the microstructures of the coatings and the time necessary for the reduction of the oxide layer have been established. For this purpose, analyses such as chronopotentiometery, SEM, EDS and linear polarization were carried out. Results indicated that higher electrophosphating current densities result in finer crystal size of the coating. This effect is detrimental to the quality of the layer. In addition, chemical analyses of the layer revealed that the use of current for electrophosphating of stainless steel 316 substrates imparted better corrosion resistance to the substrate as a result of zinc rich crystal deposition in the phosphate layer.  相似文献   

8.
Localized corrosion mechanism of stainless steel (SS) types UNS S30403 and UNS 31603 in the presence of iron-oxidizing bacteria Sphaerotilus spp. isolated from rust deposits was studied electrochemically. OCP transient, cyclic anodic and cathodic potentiodynamic polarization curves were measured on steel electrodes through their exposure to 3% NaCl solution supplemented with Sphaerotilus culture. The exposure period was composed of three parts: (a) 5 days incubation of steel electrodes in sterile 3% NaCl solution; (b) addition of 3 days-old Sphaerotilus culture to 3% NaCl at 3:2 v/v ratio with subsequent electrodes exposure for 11 days up to complete sedimentation of ferric oxides and (c) subsequent exposure of electrodes for 14 days in upper and bottom (sediments layer) fractions of the experimental medium. The results revealed an instantaneous gradual shift of the transient potential of both steels towards negative potentials from steady-state value of −0.15 V to −0.35 to −0.42 V (SCE) during the whole exposure interval since IOB culture addition into sterile 3% NaCl solution.No evidence of pitting corrosion was found on SS samples subsequent to their exposure to sterile 3% NaCl solution, though in the presence of IOB culture, numerous pits were revealed on 304 L steels specimens exposed to iron hydroxides sediments layer. Electrochemical characteristics (OCP or corrosion potential - ECORR, breakdown potential - EBD, repassivation potential - ERP, passivation current - iPASS) periodically measured by cyclic polarization method, allowed monitoring the electrochemical behavior changes of experimental SS and to establish the initiation of pitting corrosion in the presence of IOB, resulting in crevice effect caused by biogenic ferric oxides deposits precipitated on steel surface. Overall, steel 316L demonstrated higher resistance to pitting corrosion compared to 304L.  相似文献   

9.
In the present work, a novel process has been developed to improve the corrosion properties of ferritic stainless steels. Titanium oxide coatings have been deposited onto stainless steel by sol-gel process after a pre-functionalization of the substrate in a conversion bath. Gel titania was prepared by hydrolysis of a titanium butoxide through a sol-gel process. Duplex systems “conversion layer/uniform TiO2 coating” have been prepared on stainless steels using a dipping technique and thermal post-treatments at 450 °C. The preparation of sol-gel coatings with specific chemical functions offers tailoring of their structure, texture and thickness and allows the fabrication of large coatings. The morphology and structure of the coatings were analysed using scanning electron microscopy with field effect gun (SEM-FEG), Mass spectroscopy of secondary ions (SIMS) and X-ray diffraction (XRD). The anticorrosion performances and the ageing effects of the coatings have been evaluated in neutral and aggressive media by using several normalized tests.The results show that the conversion layer was not sufficient to protect steel but sol-gel TiO2 coatings, anchored on the metal substrate via the conversion layer, show good adhesion with the substrate and act as a very efficient protective barrier against corrosion. So, duplex layers with TiO2 nanoparticle coatings on steels exhibit an excellent corrosion resistance due to a ceramic protective barrier on metal surface. Analysis of the data indicates that the films act as geometric blocking layers against exposure to the corrosive media and increase drastically the lifetime of the substrate.  相似文献   

10.
Thin layer activation (TLA) has been applied to a study of the high-temperature cyclic oxidation behaviour of pure and yttrium-implanted chromium, taking advantage of the high area selectivity of the technique.On pure chromium, two different sample areas, i.e. corners and the central part of a large surface area, were selected for activation. Due to this area selectivity, it was possible to distinguish the spallation behaviour of the oxide scale formed on flat from that formed on highly curved surfaces. In particular, the TLA data showed that the oxide scale formed during high-temperature cyclic oxidation near corners and edges was more prone to cracking and spallation.In the case of yttrium-implanted specimens, activation was performed only at the centre of the implanted zone, avoiding the distorting effect of the non-implanted parts of the sample. The area selectivity of TLA made it possible to study more accurately the beneficial effect of ion implantation on the cyclic oxidation behaviour than by conventional thermogravimetry. Due to the complementary character of TLA with respect to the conventional thermogravimetry, a more complete and better understanding of the cyclic oxidation performance of materials can be obtained.  相似文献   

11.
Electric charges at the surface of a passive stainless steel are generally considered as concentrated either in the passive film itself, or at the metal/passive film interface, or in the electrical double layer at the film solution interface. Rest potential time dependence after immersion of a passive surface in aqueous electrolytes suggests however that slow processes occur in the onset of the surface charge. Specific experiments, such as streaming potential measurements and electrochemical impedance spectroscopy in a thin electrolyte cell, were carried out for understanding better this phenomenon. An AISI 304 type austenitic stainless steel with polished or bright annealed surface finishes was immersed in NaCl aqueous solutions with various pH and chloride concentrations. The streaming potential time evolution shows two steps: a first rapid one (∼2 min) is attributed to the onset of the surface charge. The second step is much slower (approximately several hours) and possibly due to an interphase layer between the passive film and the solution. Following this idea, the whole kinetics is controlled by cation migration across the interphase when the pH is larger than the isoelectric pH (pHiep), while chloride ions are incorporated in the interphase when pH < pHiep. Impedance measurements allow determining both the kinetics of charge transport and the thin cell conductivity. When glass is used as reference material for the cell walls instead of stainless steel, the Nyquist plots show a high-frequency response. For stainless steel cell walls, a low-frequency response is observed, attributed to a slow charge reorganisation inside the interphase layer. The charge distribution at metal/electrolyte interface is discussed in terms of a gel-like layer which possibly takes place at the passive film/electrolyte interface.  相似文献   

12.
Abstract

Polyaniline (PAn) coating was electrochemically synthesised on 304 stainless steel using cyclic voltammetry in 0·25M NaOH solution containing 0·1M aniline. Characterisation of the adhesive and stable PAn coating was carried out by cyclic voltammetry, Fourier transform infrared spectroscopy and scanning electron microscopy. The protective properties of PAn coating on 304 stainless steel were elucidated using linear anodic potentiodynamic polarisation and Tafel test in 3·5%NaCl solution. Linear anodic potentiodynamic polarisation test results proved that the PAn coating improved the degree of protection against pitting corrosion in NaCl solutions. Tafel test results showed that the PAn coating appeared to enhance protection for 304 stainless steel in 3·5%NaCl solution.  相似文献   

13.
Different laser energy densities were utilized to treat AISI 304 stainless steel via Nd:YAG pulsed laser surface melting (LSM). The surface composition and microstructure of the stainless steel were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM). In particular, the corrosion behaviors of the stainless steel surface without and with LSM were evaluated by the electrochemical polarization measurement in 3.5 wt.% NaCl aqueous solution at room temperature. The results showed that the stainless steel surface without LSM suffered severe localized pitting under the testing conditions. A thin surface oxide protective layer was produced on the stainless steel surface with LSM, which considerably improved the corrosion resistance properties of the stainless steel. The height differences of the corrosion regions on the stainless steel surface with LSM were measured to establish more corrosion resistant region, using scanning confocal laser microscopy. The underlying corrosion mechanism of the stainless steel with LSM was revealed.  相似文献   

14.
Results of immersion tests of UNS N06625 (alloy 625), UNS S31609 (alloy 316 L), Ni-20Cr alloy and Nb coupons exposed to oxygenated ammoniacal sulphate solution at supercritical water oxidation (SCWO) conditions are presented. The corrosion behavior of the alloy 316 L (UNS S31603) SCWO reactor tubing is also presented under the same conditions. Immersion coupons corroded at a rate not exceeding 40 mm yr−1 while the reactor tube itself corroded at a rate of between 160-1500 mm yr−1, depending on which length of the reactor is considered to have corroded. Morphological and chemical analysis of the oxides present on the coupon samples suggest that iron oxides, which had initially precipitated on the corroding alloy 316 tube surface, were removed by heat flux-driven fluid mechanical action and transported through the reactor where they deposited on the coupons. Niobium was resistant to corrosion at the tested conditions.  相似文献   

15.
We have investigated the electrochemical noise behavior of carbon steel in fully deaerated aqueous bicarbonate solutions, and discussed the optimum conditions of the noise analysis for estimating corrosion rate of the steel. Noise of the potential difference and of the short-circuit current between two identical steel coupons were successfully measured. The time-series noise patterns were transformed into frequency domain by fast Fourier transformation, and then their power spectrum densities (PSDs) at a frequency were determined to be compared with the corrosion rate. The PSDs of the potential and of the current varied with changing environmental factors of bicarbonate concentration, pH, and immersion time. The factors also controlled the corrosion rate of the steel. The PSDs were associated with the corrosion rate, and then it was found that the PSDs of the potential and of the current showed linear correlation with the corrosion rate in log-log scale. There was also linear relationship between the corrosion rate and a spectral noise resistance obtained from the PSDs of the potential and the current. The linearities of the three correlations were better at a lower analyzed frequency. Furthermore, the PSDs of the current and the noise resistance indicated more linear correlation with the corrosion rate than that of the potential. As the simplicity of the measurement system is additionally considered, it is concluded that the PSD of the current noise at an analyzed frequency of 3 mHz is the optimum conditions for estimating the corrosion rate from 10−2 to 100 A m−2 in this study.  相似文献   

16.
Experimental investigations were carried out using a pulsed neodymium:yttrium aluminum garnet laser weld to examine the influence of the pulse energy in the characteristics of the weld fillet. The pulse energy was varied from 1.0 to 2.25 J at increments of 0.25 J with a 4 ms pulse duration. The base material used for this study was AISI 316L stainless steel foil with 100 μm thickness. The welds were analyzed by optical microscopy, tensile shear tests and microhardness. The results indicate that pulse energy control is of considerable importance to thin foil weld quality because it can generate good mechanical properties and reduce discontinuities in weld joints. The ultimate tensile strength of the welded joints increased at first and then decreased as the pulse energy increased. The process appeared to be very sensitive to the gap between couples.  相似文献   

17.
Super duplex stainless steels (SDSS) have been widely used as structural materials for chemical plants (especially in those engaged in phosphoric acid production), in the hydrometallurgy industries, and as materials for offshore applications due to their excellent corrosion resistance in chloride environments, compared with other commercial types of ferritic stainless steels. These alloys also possess superior weldability and better mechanical properties than austenitic stainless steels. However, due to their two-phase structure, the nature of which is very dependent on their composition and thermal history, the behavior of SDSS regarding localized corrosion appears difficult to predict, especially in chloride environments. To improve their final properties, the effect of the partition of the alloying elements between the two phases, and the composition and microstructure of each phase are the key to understanding the localized corrosion phenomena of SDSS. This paper concerns the effects of the SDSS microstructure and heat treatment on the SDSS corrosion resistance in aqueous solutions, containing different amounts of NaCl at room temperature.  相似文献   

18.
A double layer activation technique has been used to monitor the progress of corrosion of a Type 347 stainless steel in aqueous solution. In nitric acid solution, uniform corrosion and pitting have been separately identified on the ‘top-grain’ and ‘end-grain’ surfaces respectively of specimens prepared from rolled plate. ‘Bottle-shaped’ pitting has also been detected in chloride solution. A second stage of the work demonstrated that pitting could be detected with thick metal between the active surface and the detector using high energy γ-ray-emitting isotopes.  相似文献   

19.
Electrolytic pickling of hot-rolled 304 stainless steel in Na2SO4 electrolyte was investigated with electrochemical, weight loss and SEM-EDX measurements. Pickling took place upon both active and transpassive polarisations. Mechanism and kinetics of pickling during active and transpassive polarisations were unravelled. Metallic phase in oxide layer was dissolved during active polarisation while the oxide layer was significantly undercut. Chromium oxide in the oxide layer was oxidised to soluble anions during transpassive polarisation, while iron oxide and metallic phase could either be remained or removed. Pickling due to undercutting with active polarisation was highly pronounced.  相似文献   

20.
Galvanic corrosion generated by the coupling between the austenitic stainless steel Alloy 926 (UNS N08926) and the welded Alloy 926 has been studied by means of electrochemical methods. The materials have been tested in highly concentrated LiBr solutions at different temperatures. The effect of Li2CrO4 as corrosion inhibitor has also been evaluated. Galvanic corrosion has been studied under open circuit conditions using a zero-resistance ammeter (ZRA). Results have demonstrated the poor severity of the coupling between the Alloy 926 and the welded metal in the studied conditions. The probability of localized corrosion increased with temperature and concentration, as the galvanic current density and galvanic potential data demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号