首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用热分解法制备Ti/IrO2-PbO2阳极,深入研究硫酸、硝酸、盐酸、草酸、盐酸/草酸蚀刻顺序对Ti/IrO2-PbO2阳极性能的影响规律,借助场发射扫描电子显微镜、X射线衍射、循环伏安法、线性扫描伏安法、电化学交流阻抗谱、加速寿命试验等考察钛基体及氧化物涂层的形貌、结构及电化学行为。结果表明:钛基体在双酸中的腐蚀效果优于单酸,获得更致密更均匀的表面结构。双酸腐蚀使钛表面拥有完整的TiHx晶型,有助于提高涂层负载量,增强活性层与基体的结合力。改变双酸蚀刻顺序对阳极电化学性能有一定的影响。草酸/盐酸蚀刻剂处理Ti/IrO2-PbO2阳极具有最佳的电催化活性与最长的加速寿命。  相似文献   

2.
通过改变腐蚀方法,研究了使用H2C2O4和H2SO4进行钛基体表面刻蚀对金属氧化物钛阳极电化学性能和表面形貌的影响。采用扫描电子显微镜、X射线衍射仪和光电子能谱等测试方法对样品进行了结构分析。然后利用电化学工作站测试了样品的电催化活性,利用加速寿命测试研究了样品的电化学稳定性。结果表明,通过H2C2O4和H2SO4分步腐蚀可以获得更加均匀致密的表面形貌和更好的催化稳定性。在此基础上,进一步研究了预处理对钛阳极寿命的影响原因。IrO2-Ta2O5/Ti阳极的催化活性和稳定性与酸刻蚀处理的先后顺序及表面结构密切相关,并建立了预处理方法与阳极性能之间的关系。分步腐蚀使钛表面具有合适的粗糙度,因而提升了涂层附着力。在热分解过程中,经分步腐蚀形成的氢化钛在不改变表面形貌的情况下转变为金红石结构的氧化钛,有利于电子输运,从而增强涂层附着力并延长加速寿命。  相似文献   

3.
Amphiphilic TiO2 nanotube arrays (TiO2 NTs) were fabricated through electrochemical oxidation of Ti in solution containing H3PO4 and NaF. Scanning electron microscopic analysis shows that the as-prepared TiO2 NTs have an average pore diameter of 100 nm and a wall thickness of 15 nm. The electrochemical oxidation of Ti can be divided into four stages. In the first stage, when the potential is very low, oxygen formation and Ti dissolution are the major reactions. The second stage corresponds to a slightly higher potential, but less than 2.5 V. In this stage, the formation of TiO2 film occurs. When the potential is increased to the even higher range from 2.5 V to 6 V, the TiO2 film dissolves and nanoporous surface structure is generated. This is the third stage. Further increase of the potential enters stage four. The high potentials cause the self-organization of the nanostructure and allow the formation of well-aligned TiO2 NTs. We also found that the change in surface condition of Ti by annealing heat treatment affects the film dissolution kinetics. As compared with TiO2 thin film, the TiO2 NTs show higher photocatalytic activity on decomposing Rhodamine B. The surface of the TiO2 NTs can be wetted by both water and oil. Such an amphiphilic property comes from the capillary effect of the nanochannel structure of the TiO2 NTs. Because of the amphiphilic property and the photocatalytic activity, we conclude that the TiO2 NTs have the capability of self-cleaning.  相似文献   

4.
This paper presents the results of experimental investigations carried out on the synthesis of pure ZrB2 by boron carbide reduction of ZrO2 and densification with the addition of HfB2 and TiSi2. Process parameters and charge composition were optimized to obtain pure ZrB2 powder. Monolithic ZrB2 was hot pressed to full density and characterized. Effects of HfB2 and TiSi2 addition on densification and properties of ZrB2 composites were studied. Four compositions namely monolithic ZrB2, ZrB2 + 10% TiSi2, ZrB2 + 10% TiSi2 + 10% HfB2 and ZrB2 + 10% TiSi2 + 20% HfB2 were prepared by hot pressing. Near theoretical density (99.8%) was obtained in the case of monolithic ZrB2 by hot pressing at 1850 °C and 35 MPa. Addition of 10 wt.% TiSi2 resulted in an equally high density of 98.9% at a lower temperature (1650 °C) and pressure (20 MPa). Similar densities were obtained for ZrB2 + HfB2 mixtures also with TiSi2 under similar conditions. The hardness of monolithic ZrB2 was measured as 23.95 GPa which decreased to 19.45 GPa on addition of 10% TiSi2. With the addition of 10% HfB2 to this composition, the hardness increased to 23.08 GPa, close to that of monolithic ZrB2. Increase of HfB2 content to 20% did not change the hardness value. Fracture toughness of monolithic sample was measured as 3.31 MPa m1/2, which increased to 6.36 MPa m1/2 on addition of 10% TiSi2. With 10% HfB2 addition the value of KIC was measured as 6.44 MPa m1/2, which further improved to 6.59 MPa m1/2 with higher addition of HfB2 (20%). Fracture surface of the dense bodies was examined by scanning electron microscope. Intergranular fracture was found to be a predominant mode in all the samples. Crack propagation in composites has shown considerable deflection indicating high fracture toughness. An oxidation study of ZrB2 composites was carried out at 900 °C in air for 64 h. Specific weight gain vs time plot was obtained and the oxidized surface was examined by XRD and SEM. ZrB2 composites have shown a much better resistance to oxidation as compared to monolithic ZrB2. A protective glassy layer was seen on the oxidized surfaces of the composites.  相似文献   

5.
A new synthesis process, laser ablation in an aqueous solution of target material, was applied to synthesize nanostructured CeO2/TiO2 catalyst particles. Reactivity within the laser plume (plasma) can be used to synthesize CeO2 from an aqueous solution, 2 M cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O) aqueous solution, and to fabricate TiO2 from Ti target. CeO2/TiO2 nanoparticles were successfully synthesized by the laser ablation of Ti target in 2 M cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O) aqueous solution. Laser ablation of Ti in a liquid environment and chemical reactions of the solution within a plasma plume are discussed.  相似文献   

6.
The Gd(Ni1/2Zr1/2)O3 (GNZ) ceramic is synthesized by the solid-state reaction technique. The X-ray diffraction pattern of the sample shows monoclinic phase at room temperature. The dielectric dispersion of the material is investigated in the temperature range from 303 K to 673 K and in the frequency range from 100 Hz to 1 MHz. The relaxation peak is observed in the frequency dependence of the loss tangent. The relaxation time at different temperatures is found to obey Arrhenius law having activation energy of 1.1 eV which indicates the hopping of ions at the lattice site and may be responsible for the dielectric relaxation of GNZ. The scaling behaviour of loss tangent suggests that the relaxation mechanism is temperature independent. The frequency dependent conductivity spectra follow the power law. In the impedance formalism, the Cole-Cole model is used to study the relaxation mechanism of GNZ.  相似文献   

7.
The effects of K2O and Li2O-doping (0.5, 0.75 and 1.5 mol%) of Fe2O3/Cr2O3 system on its surface and the catalytic properties were investigated. Pure and differently doped solids were calcined in air at 400-600 °C. The formula of the un-doped calcined solid was 0.85Fe2O3:0.15Cr2O3. The techniques employed were TGA, DTA, XRD, N2 adsorption at −196 °C and catalytic oxidation of CO oxidation by O2 at 200-300 °C. The results revealed that DTA curves of pure mixed solids consisted of one endothermic peak and two exothermic peaks. Pure and doped mixed solids calcined at 400 °C are amorphous in nature and turned to α-Fe2O3 upon heating at 500 and 600 °C. K2O and Li2O doping conducted at 500 or 600 °C modified the degree of crystallinity and crystallite size of all phases present which consisted of a mixture of nanocrystalline α- and γ-Fe2O3 together with K2FeO4 and LiFe5O8 phases. However, the heavily Li2O-doped sample consisted only of LiFe5O8 phase. The specific surface area of the system investigated decreased to an extent proportional to the amount of K2O and Li2O added. On the other hand, the catalytic activity was found to increase by increasing the amount of K2O and Li2O added. The maximum increase in the catalytic activity, expressed as the reaction rate constant (k) measured at 200 °C, attained 30.8% and 26.5% for K2O and Li2O doping, respectively. The doping process did not modify the activation energy of the catalyzed reaction but rather increased the concentration of the active sites without changing their energetic nature.  相似文献   

8.
Nano-particles of homogeneous solid solution between TiO2 and Fe2O3 (up to 10 mol%) have been prepared by mechanochemical milling of TiO2 and yellow Fe2O3/red Fe2O3/precipitated Fe (OH)3 using a planetary ball mill. Such novel solid solution cannot be prepared by conventional co-precipitation technique. A preliminary investigation of photocatalytic activity of mixed oxide (TiO2/Fe2O3) on photo-oxidation of different organic dyes like Rhodamine B (RB), Methyl orange (MO), Thymol blue (TB) and Bromocresol green (BG) under visible light (300-W Xe lamp; λ > 420 nm) showed that TiO2 having 5 mol% of Fe2O3 (YFT1) is 3-5 times higher photoactive than that of P25 TiO2. The XRD result did not show the peaks assigned to the Fe components (for example Fe2O3, Fe3O4, FeO3, and Fe metal) on the external surface of the anatase structure in the Fe2O3/TiO2 attained through mechanochemical treatment. This meant that Fe components were well incorporated into the TiO2 anatase structure. The average crystallite size and particle size of YFT1 were found to be 12 nm and 30 ± 5 nm respectively measured from XRD and TEM conforming to nanodimensions. Together with the Fe component, they absorbed wavelength of above 387 nm. The band slightly shifted to the right without tail broadness, which was the UV absorption of Fe oxide in the Fe2O3/TiO2 particle attained through mechanochemical method. This meant that Fe components were well inserted into the framework of the TiO2 anatase structure. EPR and magnetic susceptibility show that Fe3+ is in low spin state corresponding to μB = 1.8 BM. The temperature variation of μB shows that Fe3+ is well separated from each other and does not have any antiferromagnetic or ferromagnetic interaction. The evidence of Fe3+ in TiO2/Fe2O3 alloy is also proved by a new method that is redox titration which is again support by the XPS spectrum.  相似文献   

9.
A novel dibarium cadmium diborate, Ba2Cd(BO3)2, has been successfully synthesized by standard solid-state reaction. Large sheet-like crystal with size up to 20 mm × 15 mm × 0.7 mm has been obtained using top-seed solution growth method. Ba2Cd(BO3)2 crystallizes in the monoclinic space group C2/m with a = 9.6305(4) Å, b = 5.3626(3) Å, c = 6.5236(2) Å, β = 118.079(3)°, Z = 2. The crystal structure is composed of isolated [BO3] triangles, [CdO6] octahedra and [BaO9] polyhedra. CdO6 are vertex-connected with six BO3 to form infinite [Cd(BO3)2] layers extending in (0 0 1) plane, and two rows of Ba atoms closely occupy two side of [Cd(BO3)2] layers to forming stoichiometric sheets. IR and transmittance spectrum of Ba2Cd(BO3)2 were reported.  相似文献   

10.
The core-shell structure cathode material Li(Ni0.8Co0.15Al0.05)0.8(Ni0.5Mn0.5)0.2O2 (LNCANMO) was synthesized via a co-precipitation method. Its applicability as a cathode material for lithium ion batteries was investigated. The core-shell particle consists of LiNi0.8Co0.15Al0.05O2 (LNCAO) as the core and a LiNi0.5Mn0.5O2 as the shell. The thickness of the LiNi0.5Mn0.5O2 layer is approximately 1.25 μm, as estimated by field emission scanning electron microscopy (FE-SEM). The cycling behavior between 2.8 and 4.3 V at a current rate of 18 mA g−1 shows a reversible capacity of about 195 mAh g−1 with little capacity loss after 50 cycles. High-rate capability testing shows that even at a rate of 5 C, a stable capacity of approximately 127 mAh g−1 is retained. In contrast, the capacity of LNCAO rapidly decreases in cyclic and high rate tests. The observed higher current rate capability and cycle stability of LNCANMO can be attributed to the lower impedance including charge transfer resistance and surface film resistance. Differential scanning calorimetry (DSC) indicates that LNCANMO had a much improved oxygen evolution onset temperature of approximately 251 °C, and a much lower level of exothermic-heat release compared to LNCAO. The improved thermal stability of the LNCANMO can be ascribed to the thermally stable outer shell of LiNi0.5Mn0.5O2, which suppresses oxygen release from the host lattice and not directly come into contact with the electrolyte solution. In particular, LNCANMO is shown to exhibit improved electrochemical performance and is a safe material for use as an electrode for lithium ion batteries.  相似文献   

11.
T3SiC2 bulks have been synthesized by infiltrating Si liquid into porous precursor pellets composed of solid TiC and Ti powders. Silicon pellets were placed at the bottom of the precursor pellets as the liquid source. The starting compositions can be represented by the formula 2TiC + Ti + xSi, where x = 1.0, 1.2, 1.5 and 1.8, respectively. The phase formation and microstructure of the bulks were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS) system. The results demonstrated that the TiC/Ti precursor pellet could only react with Si completely when the x value is 1.8. Impurities SiC, Ti-Si binary compounds and Ti8C5 appeared along the silicon diffusion direction. It is found that the compositions of impurities strongly depended on the Si-concentration. Reaction mechanism of this Ti3SiC2 infiltration synthesis has also been discussed based on the Si-concentration changes on the diffusion path.  相似文献   

12.
Laminated ZrB2-SiC ceramics with ZrO2 interface layers were successfully prepared by tape casting, laminating and hot pressing. The flexural strength and fracture toughness are 561 ± 20 MPa and 14.4 ± 0.3 MPa m1/2 for parallel direction, and 432 ± 18 MPa and 5.8 ± 0.3 MPa m1/2 for perpendicular direction. The fracture toughness for parallel direction is improved significantly compared to monolithic ZrB2-SiC ceramics. The toughening mechanism was attributed to the deflection and branch of the crack and the new microcracks, which would increase the propagation path and fracture work.  相似文献   

13.
Transition metal oxides in the nano size region are enormous attention as a new generation of anode materials for high energy density Li-ion batteries. MgFe2O4 is used for the first time as active electrode vs. lithium metal in test cells. The research has been focused on the effect of grain size of MgFe2O4 and their electrochemical performance studied. In this studies, nanostructured milled MgFe2O4 (grain size 19 nm) sample have been compared with relatively large-sized as-prepared sample (grain size 72 nm). From the result, the 19 nm grain size sample delivered an improved discharge capacity of around 850 mAh/g, whereas it is only 630 mAh/g for as-prepared sample (72 nm). These values are two times higher than that of a carbon anode (372 mAh/g). The anomalous capacity may be associated with the formation of oxygen rich MgFe2O4 samples.  相似文献   

14.
Tm3+/Er3+/Yb3+ triply doped Y2O3 transparent ceramics were fabricated by solid state reaction and characterized from the point of view of white light upconversion luminescence. All the samples exhibited high transparency not only in near-infrared band but also in visible region. Strong red (Er3+: 4F9/2 → 4I15/2), green (Er3+: 2H11/2, 4S3/2 → 4I15/2) and blue (Tm3+: 1G4 → 3H6) upconversion emissions have been observed under 980 nm excitation at room temperature. By varying the concentration of Er3+ ion, various colors of upconversion luminescence (pure blue, bluish green, pure green and yellowish green), including white light with CIE-X = 0.295 and CIE-Y = 0.312, can be easily achieved.  相似文献   

15.
This paper presents the results of investigation carried out on synthesis and densification of monolithic HfB2 and the effect of TiSi2 as sinter additive. Pure phase HfB2 was prepared by boron carbide reduction of HfO2 and hot pressed to full density with the addition of TiSi2. Isothermal oxidation study of this composite was carried out at 850 °C up to 64 h. Formation of HfB2 was seen at 1200 °C but pure HfB2 was formed at a much higher temperature of 1875 °C in vacuum. Hot pressing of HfB2 at 1850 °C and 35 MPa pressure gave a compact of 80% TD. Addition of TiSi2 helped in achieving a much higher density at a lower temperature of 1600 °C and a pressure of 20 MPa. A fully dense composite of HfB2 and TiSi2 was obtained with 15% TiSi2. Hardness and fracture toughness of this composite were 27.4 ± 1.9 GPa and 6.6 ± 0.2 MPa m1/2, respectively. Considerable deflection was observed in the crack propagation in composites. Oxidation studies indicated the formation of HfO2, SiO2, TiO2 and HfSiO4 with some glassy phase and the composite with 15% TiSi2 was seen to be completely covered with a protective glassy layer.  相似文献   

16.
(Bi0.5Na0.5)0.94Ba0.06TiO3 + x wt% Dy2O3 with x = 0-0.3 ceramics were synthesized by conventional solid-state processes. The effects of Dy2O3 on the microstructure, the piezoelectric and dielectric properties were investigated. X-ray diffraction pattern confirmed that the coexistence of tetragonal and rhombohedral phases in the (Bi0.5Na0.5)0.94Ba0.06TiO3 composition was not changed by adding 0.05-0.3 wt% Dy2O3. SEM images indicate that all the ceramics have pore-free microstructures with high density, and that doping of Dy2O3 inhibits the grain growth of the ceramics. The addition of Dy2O3 shows the double effects on decreasing the piezoelectric and dielectric properties for 0 < x < 0.15 when Dy3+ ions substitute B-site Ti4+ ions, and increasing the properties for 0.15 < x < 0.3 when Dy3+ ions enters into A-site of the perovskite structure. The optimum electric properties of piezoelectric constant d33 = 170 pC/N and the dielectric constant ?r = 1900 (at a frequency of 1 kHz) are obtained at x = 0.3.  相似文献   

17.
In this paper we report on the electrochemical corrosion of select MAX phases, namely Ti2AlC, (Ti,Nb)2AlC, V2AlC, V2GeC, Cr2AlC, Ti2AlN, Ti4AlN3, Ti3SiC2 and Ti3GeC2 in 1 M NaOH, 1 M HCl and 1 M H2SO4 solutions. Polarization characteristics recorded in 1 M NaOH show that V2AlC, V2GeC and Cr2AlC undergo active dissolution at potentials more positive than the corrosion potential, while Ti2AlC, (Ti,Nb)2AlC, Ti3SiC2 and Ti3GeC2 passivate. In the 1 M HCl solutions, Ti2AlC, V2AlC and V2GeC actively dissolve; Ti3SiC2 and Ti3GeC2 passivate. Depending on potential, (Ti,Nb)2AlC and Cr2AlC showed trans-passive behavior. In 1 M H2SO4 solutions, Ti2AlC, (Ti,Nb)2AlC, Ti3SiC2 and Ti3GeC2 passivate, V2AlC and V2GeC show active dissolution, while Cr2AlC exhibits trans-passive behavior. Ti2AlN and Ti4AlN3 were passive in all solutions except in 1 M HCl, where Ti2AlN showed trans-passive behavior. Given that the corrosion behavior of (Ti,Nb)2AlC is unlike either Ti or Nb, the behavior of the former cannot be predicted from that of the latter.  相似文献   

18.
Highly dense n-type Bi2Te3-based thermoelectric materials dispersed with x vol.% γ-Al2O3 nanoparticles (x = 0, 0.4, 1.0, 1.5) were fabricated by spark plasma sintering method. The effects of γ-Al2O3 addition on microstructure and the thermoelectric properties were studied. It was found that γ-Al2O3 nanoparticles locate both at grain boundaries and inside Bi2Se0.3Te2.7 grains. The nanoparticles induce both potential barrier scattering effect and additional phonon scattering effect, which simultaneously enhance the Seebeck coefficient and reduce the lattice thermal conductivity of the nanocomposites in the measured temperature range of 300-500 K, respectively. The maximum dimensionless figure of merit (ZTmax) reaches up to 0.99 for the sample with x = 1.0 at 400 K, which is 35% improvement over the Bi2Te3-based matrix. More importantly, the average ZT value of the sample increases from 0.65 to 0.91 in the temperature range 300-500 K, making the nanocomposites much more applicable in cooling and power generation.  相似文献   

19.
Microstructure and microwave dielectric properties of Mg-substituted ZnNb2O6-TiO2 microwave ceramics were investigated. Mg acted as a grain refining reagent and columbite phase stabilization reagent. With an increasing Mg content, the amount of ixiolite (Zn, Mg) TiNb2O8 decreased, and the amount of (Zn0.9Mg0.1)0.17Nb0.33Ti0.5O2 and columbite increased. ZnO-Nb2O5-1.75TiO2-5 mol.%MgO exhibited excellent dielectric properties (at 950 °C): ?r = 35.6, Q × f = 16,000 GHz (at 5.6 GHz) and τf = −10 ppm/°C. The material was applied successfully to make RF/microwaves ceramic capacitor, whose self-resonance frequency was 19 GHz at low capacitance of 0.13 pF.  相似文献   

20.
Electrochemical properties of RuO2-based electrode, particularly the oxygen evolution and anodic dissolution of RuO2 have been investigated in 0.5 mol dm−3 H2SO4 solution by means of polarization measurements and product analysis. It has been demonstrated that it is possible to determine very low concentration of dissolved ruthenium species (8 × 10−10 mol dm−3 Ru) by a sensitive spectrophotometric method based on the ruthenium-catalyzed ceric-arsenite reaction.Finally, the probable mechanism of anodic dissolution of RuO2-based electrode, has been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号