首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The carrier gas process (CGP) based on humidification and dehumidification is a new interesting process (with respect to previous conventional processes such as multistage flash and reverse osmosis) for water desalination. The CGP contains several advantages such as flexibility in capacity, moderate installation and operating cost, possibility of using a wide range of thermal energies (geothermal, solar, recovered, direct fossil fuel, etc.) and simplicity (atmospheric pressure). The aim of this paper is to present the principal and characteristics of this technique based on experimental investigation. The present pilot plant unit consists of two packed columns, humidification and dehumidification, one heat exchanger and one air pre-heater. Most investigators have used solar thermal energy as the source for heating the saline water, but in this work electrical energy was used for heating the air stream. Besides this point most investigators have used a coil heat exchanger for condensation of fresh water but in the present work a packed column was used instead to do the same job. The experimental results of the work that was carried out at Bushehr Port, southern Iran, were: the effect of air pre-heater and coolant water temperatures, air, saline water, recirculating fresh water and coolant water flow rates on the amount of produced fresh water per unit of heat duty and fresh water production flow rate. It was found that the performance of the system strongly depended on the temperature and flow rate of the air pre-heater and the temperature and flow rate of the coolant water. However, it depended weakly on the flow rate of the saline water and fresh water re-circulation. It is expected that the unit would be of great potential for saline water desalination in arid areas and isolated islands.  相似文献   

2.
The fresh water shortage is a significant problem in many areas of the world such as deserts, rural areas, Mediterranean countries and islands. However, renewable energy potential in these areas is usually high using solar and wind energy. A desalination unit powered by renewable energy sources is a promising solution for this problem. This paper presents the design of a stand-alone hybrid wind-PV system to power a seawater reverse osmosis desalination unit, with energy recovery using a simplified spreadsheet model. A daily and monthly simulation and economic analysis were also performed. The calculated fresh water production cost was 5.2 ?/m3, and the realized energy saving was up to 48% when a pressure-exchanger-type energy recovery unit is considered.  相似文献   

3.
The present study introduces an attempt for the application of flash desalination technique for small scale needs. An integrated system uses a flashing desalination technique coupled with nano-fluid-based solar collector as a heat source has been made to investigate both the effect of different operating modes and that of the variation of functioning parameters and weather conditions on the fresh water production. The flashing unit is performed by similar construction design technique of commercial multi-stage flashing (MSF) plant. The thermal properties of working fluid in the solar collector have been improved by using different concentrated nano-particles. Cu nano-particle is used in the modeling to determine the proper nano-fluid volume fraction that gives higher fresh water productivity. An economic analysis was conducted, since it affects the final cost of produced water, to determine the cost of fresh water production. Although a system may be technically very efficient, it may not be economical. The effect of different feed water and inlet cooling water temperatures on the system performance was studied. The mathematical model is developed to calculate the productivity of the system under different operating conditions. The proposed system gives a reasonable production of fresh water up to 7.7 l/m2/day under the operation conditions. Based on the cost of energy in Egypt, the estimated cost of the generated potable water was 11.68 US$/m3. The efficiency of the system is measured by the gained output ratio (GOR) with day time. The gained output ratio (GOR) of the system reaches 1.058. The current study showed that the solar water heater collecting area is considered a significant factor for reducing the water production cost. Also, the produced water costs decrease with increasing the collecting area of the solar water heater. The volume fractions of nano-particle in solar collector working fluid have a significant impact on increasing the fresh water production and decreasing cost.  相似文献   

4.
A solar still is a device which allows obtaining fresh water from seawater or brackish water. It utilizes the greenhouse effect by using solar energy. In a conventional solar still the production of fresh water in bright sunny weather and with warm air temperature is about 5-5.5 L m−2 d−1, according to the depth of the water in the solar still. In some devices it is possible to obtain efficiencies of up to 0.50 and 0.60. The aim of this research is to increase distillation productivity by utilizing the latent heat released by the condensing water steam. For this purpose the author built a solar still characterized by two basins (B1 and B2) superimposed upon each other. The building materials were a sheet of black Plexiglas for the bottom of the solar still, a sheet of transparent Plexiglas for all boxes, and a sheet of expanded polystyrene, used as insulating material. The solar still was hermetically sealed to reduce the leakage of vapor to the surroundings. The greatest quantity of fresh water obtained by the tested solar still was 1.7-1.8 L m−2 d−1. This result was achieved in the third week of July when solar radiation was 27-28 MJ m−2 d−1. The efficiency of the tested solar still was about 0.16. This low efficiency is probably due to the low temperature of the water contained in the still (about 50°C). The solar still has only been used in experiments for some months, during which it has not been possible to study the deterioration of the material (Plexiglas). These results show that an elaborate design and the increased costs for such design and construction do not always improve the water yield.  相似文献   

5.
This paper experimentally evaluates a two-stage technique to improve the humidification–dehumidification process in fresh water production from brackish water. According to modeling results of multi-stage process and on the basis of construction cost estimation, using a two-stage process is the most suitable choice that can improve important parameters such as specific energy consumption, productivity and daily production per solar collector area and thus, investment cost. A pilot plant was designed and constructed in an arid area with 80 m2 solar collector area to evaluate the two-stage process. This unit was tested on cold and hot days. The effect of main parameters on fresh water production of the unit is studied. Experimental results show that two-stage HD desalination unit can increase heat recovery in condensers and hence, reduce thermal energy consumption and investment cost of the unit. Moreover, productivity can be increased by 20% compared with the single-stage unit.  相似文献   

6.
A modular solar cabinet dryer equipped with an air collector including a drying chamber with different tray arrangements was developed to determine moisture changes in different sizes and forms (slices and cubes) of apple and carrot pieces and to carry out serial measurements of temperatures, solar radiation, and air humidity distributions during the drying process. The initial and final moisture contents (w.b.) of fresh products were 88 and 26% for apple and 71 and 13% for carrot with initial weights of 1.56 and 3 kg, respectively. The results revealed that the temperature inside the chamber was strongly negatively correlated with air humidity (R2 = 0.91) and that the length of the drying period was influenced by the weather conditions, as the cloudy weather retarded drying of carrots. It was possible to reach an air drying temperature over 41°C with a daily total solar energy incident on the collector's surface of 857.2 kJ/(m2 day) for apples and 753.20 kJ/(m2 day) for carrots. The analysis of energy requirements to remove moisture from apples and carrots during the total drying period showed values of 3300.19 and 7428.28 kJ/kg, respectively. The amount of air to remove water from the samples was also determined as 126.93 m3 for apples and 928.56 m3 for carrots.  相似文献   

7.
In this study, a temperature-controlled solar air collector was designed and tested for drying. Solar drying systems have two disadvantages. First one is the lack of ability to store energy and the second one is the lack of temperature control. This study presents the experimental analysis of an air collector that is able to keep the drying air temperature at 40°C even in cases where the level of solar radiation received by the collectors changes. Most of the tests were performed at a solar radiation level ranging from 500 to 900?W/m2 and at an air flow of 3 to 5?m/s. The system tested for drying three different crops separately performed 21?h of a total of 27-h drying period at or above the temperature set of 40°C. The thermodynamic analysis of the relationship between solar radiation, air temperature, flow, and the produced energy was performed. The relationship between productivity, energy produced, and set temperature was analyzed using distribution charts. Moreover, an artificial neural network model was used to estimate outlet air temperature from the solar collectors based on air flow, solar radiation, and outside air temperature.  相似文献   

8.
This work applies to process design, simulation, analysis, and optimization to minimize the energy requirements for producing desalinated water using ambient air (humidification and dehumidification process). The only operating cost is for the use of air blower to supply air flowrate of 65-70 kmol/h. The production rate is 1 gpm of desalinated water per 2.25 gpm of saline water. By using process simulation and applying energy optimization concepts, the process parameters were manipulated and analyzed so that the feed saline water to the column is used to cool the exit air stream. The proposed approach reduced the solar energy requirement by 65%, and the cooling energy is eliminated. A case study is pursued to show the effectiveness of using process simulation and energy optimization concepts.  相似文献   

9.
In this study, influence of the different system operating conditions on the performance of a solar desalination system using humidification-dehumidification process have been investigated experimentally under the climatological conditions of Ankara (40°N, 33°E), Turkey. An experimental set-up that consists of a double-pass flat plate solar air heater with two glass covers, pad humidifier, dehumidifying exchanger and water storage tank was designed and manufactured. Working principle of the set-up is based on the idea of closed water and open-air cycles. A series of tests were performed on it in outdoor environment, in order to assess the effect of mass flow rate of the feed water, process air and cooling water, double-pass flat plate solar air heater, initial water temperature and amount of the water inside the storage tank on the productivity of the system. Additionally, an evacuated tubular solar water heater unit was integrated to the existing system and the effect of this integration on the performance of the system was examined. Solar radiation, wind speed, relative humidity, mass flow rate of the feed water, process air and cooling water, mass of condensate water and temperatures at various locations were obtained during the experiments.

The results of the experimental study showed that under certain operating conditions, the system productivity decreases about 15% if double-pass solar air heater is not used and significant improvement on the productivity of the system is achieved by increasing the initial water temperature inside the storage tank. In addition, productivity of the system increases with increasing the feed water mass flow rate and quantity of water inside the storage tank. However, productivity of the system remains approximately the same when the air mass flow rate is increased. Moreover, increasing the cooling water mass flow rate results in the improvement on the productivity of the system investigated. Finally, results obtained from the present investigation were compared with the theoretical study and a good agreement between them is observed.  相似文献   


10.
The report concerns basic technological features of simple solar stills utilizing tubes for sea water desalting. The evaporation section comprises horizontal transparent thin-walled plastic or glass tubes, of ~0.10–0.25 m inner diameter, half-filled with sea water which absorbs solar radiation. The condensation section is physically separated from the evaporation section, in a shaded space below it, and comprises horizontal plastic or metal tubes of ~0.01 m inner diameter. The wall thickness of condenser plastic tubes is rather small, ~50 μm.

Water vapour released by solar radiation in evaporator tubes flows into condenser tubes to be condensed into produced fresh water by delivering condensation latent heat to atmospheric air. Heat transfer by air convection may be helped by surface winds, often available in coastal areas. Enhanced fresh water productivity is expected with respect to conventional solar stills in which sea water evaporation and water vapour condensation occur in one confined space. Technological features of the proposed solar stills are analysed in some detail and specific experimental work is suggested on prototype solar stills in view of clarifying relevant aspects concerning transparent and opaque construction materials, assembling procedures, and the role of the various operative parameters vis-à-vis energy efficiency and fresh water productivity.  相似文献   


11.
唐易达  郑文亨  贾彬  唐中华  梁才航 《化工学报》2010,61(11):2804-2809
基于温-湿度独立控制理论,结合热湿地区的气候特点,设计了复合型太阳能溶液除湿空调系统(CSLDAS),通过建立热质传递控制方程,模拟分析了CSLDAS的除湿/再生性能和运行能耗。结果表明,CSLDAS能够综合利用多种可再生能源,有效降低空调能耗,并可有效增强除湿器/再生器的除湿/再生能力,减小对太阳辐射强度的依赖。本研究可为溶液除湿空调在热湿地区的节能设计提供理论指导。  相似文献   

12.
A solar drier of the through-draft type (4 trays at 0.5 m2 surface area) with natural air convection and an auxiliary gas heating system was constructed. General relationships between the climatic conditions of the ambient air, product load and drying characteristics were established. Test runs with the drier as continuous equipment were carried out over a period of 24 h, using carrot dice as experimental material. Air flow rates through the dryer between 100 and 140 kg/h and overall drying rates between 1.5 and 2 kg/h were reached. The overall energy efficiency coefficient for the hybrid heating system amounted to 27 % as compared to 31 to 37 % for the solar energy heating alone and to 22 to 27 % for gas heating energy alone. A combination of continuous drying in the first stage with subsequent batch-wise finish drying in the same or a supplementary drier seems to be advantageous.  相似文献   

13.
This paper reports on the progress which was made in the field of solar desalination in order to obtain reliable equipment capable to both operate under the severe requirements associated with the use of solar energy as a variable source of heat and to yield favourable economic conditions in view of larger scale utilisation of the undepletable source of energy for the generation of fresh water.The results of a 2 year experience with a selfregulating solar MSF desalination plant under the extreme environmental conditions in the middle east will be discussed. A new type of a solar selfregulating fluidized bed MSF desalination unit will be presented for the first time. The new development which has been carried to a mass-production-level is the result of the experience gained in this field over the last years.The operation of the Atlantis desalination unit with different types of solar collection systems, in particular the salt gradient solar pond energy collection and storage system, will be discussed from the technical and economical point of view to demonstrate the feasibility of future larger scale solar desalination.  相似文献   

14.
A numerical study was carried out to investigate the micro-climatic environmental conditions inside a greenhouse-distillation system, self-sufficient for irrigating water. The greenhouse consists of the planting cavity, circulating air channels and roof solar distiller for the production of a rather modest rate of irrigating water. A turbulent, steady-state flow, energy and humidity concentration equations were solved using the numerical code FLUENT 6.1. Velocity vectors, steam function, isotherms and temperature and humidity distribution inside the greenhouse present the resultant: micro-climatic environmental conditions. The results are presented for hot days where cold and humid air (from the evaporative cooler) enters the greenhouse from one side and is circulated through the partially porous cavity (representing the plants) and flows through air flow channels and leaves from a vertical thermal chimney. The results show that, with the selected inlet flow conditions, the flow velocity, temperature, and relative humidity can be within the comfort values for plant growth. The effect of some important environmental, design, and operational parameters on greenhouse micro-climatic conditions has also been highlighted.  相似文献   

15.
新型闭式太阳能海水淡化装置及其性能模拟   总被引:2,自引:1,他引:1  
本文提出了一种闭式海水淡化装置,阐述了系统的工作原理,建立了相应的数学模型。就冷却水流量、海水喷淋量、集热器面积、蒸发器尺寸等因素对系统淡水产量的影响情况进行了计算机模拟,根据实验测得的气象数据对一天内系统淡水产量随时间变化情况进行了模拟,并根据典型的月平均日气象数据对系统一年内每个月的系统性能进行了分析。分析表明,不计系统夜间运行时的淡水产量,在西安地区系统淡水产量可以达到4.6kg/d.m2。  相似文献   

16.
This paper deals with a global analysis of the use of solar energy in seawater distillation under Spanish climatic conditions. Static solar technologies as well as one-axis sun tracking were compared. Different temperature ranges of the thermal energy supply required for a desalination process were considered. At each temperature range, suitable solar collectors were compared in some aspects as: (1) fresh water production from a given desalination plant; (2) attainable fresh water production if a heat pump is coupled to the solar desalination system; (3) area of solar collector required for equivalent energy production. Results showed that direct steam generation (DSG) parabolic troughs are a promising technology for solar-assisted seawater desalination.  相似文献   

17.
The common methods of desalination salt water for production of fresh water by distillation, reverse osmosis and electrodialysis are intensive energy techniques. However, in remote arid areas, the desalination needs not exceed a few cubic meters per day. This decentralised demand favours local water production by developing other desalination processes, especially those using renewable or recovered energy (solar, geothermal, etc.). Solar desalination process is one of these methods used to resolve the scarcity of fresh water. Several reviews have been published by different authors. Small production systems as solar stills can be used if fresh water demand is low and the land is available at low cost. To supply the population of remote arid lands of South Algeria with drinkable water, solar distillation of brackish waters is recommended. It satisfies some of theses demands. Solar stills are used to produce fresh water from brackish water by directly utilising sunshine. These stills represent the best technical solution to supply remote villages or settlements in South Algeria with fresh water without depending on high-tech and skills. The production capacity indicates a possible daily production of far more than 15 l/m2d. Therefore, the still has a place in the upper range of known comparable products with regards to production output. This depends on the material used and the price of the solar stills and their accessories. The best working temperature solves most problems. Small, modular high-performance stills with features like the possibility of decentralised use, less maintenance and robust construction can help to reduce fresh water scarcity. The recent development of stills based on new concepts and heat recovery has been successful. The technical optimization is still in process today, it aims to improvement of the efficiency of these distillers. In our research work, a plant for brackish water distillation by directly sunshine and heat recovery was constructed and investigated experimentally and theoretically in South Algeria. This study aims the improvement of the performance of this solar distillation plant, conducted under the actual insulation, for brackish underground geothermal water desalination.  相似文献   

18.
Saffron is the most expensive spice and Iran is the largest producer of this crop in the world. Saffron quality is profoundly affected by the drying method. Recent research has shown that hybrid photovoltaic–thermal solar power systems are more efficient in comparison with individual photovoltaic and thermal systems. In addition, heat pump dryers are highly energy efficient. Furthermore, they are suitable for heat-sensitive crops such as saffron. Therefore, in the present study, the performance of a hybrid photovoltaic–thermal solar dryer equipped with a heat pump system was considered for saffron drying, in order to obtain a high-quality product and reduce fossil fuel consumption. The effect of air mass flow rate at three levels (0.008, 0.012, and 0.016 kg/s), drying air temperature at three levels (40, 50, and 60°C), and two different dryer modes (with and without the heat pump unit) on the operating parameters of the dryer was investigated. The results of the investigation showed that total drying time and energy consumption decreased as air flow rate and drying air temperature increased. Applying a heat pump with the dryer led to a reduction in the drying time and energy consumption and an increase in electrical efficiency of the solar collector. The average total energy consumption was reduced by 33% when the dryer was equipped with a heat pump. Maximum values for electrical and thermal efficiency of the solar collector were found to be 10.8 and 28%, respectively. A maximum dryer efficiency of 72% and maximum specific moisture extraction rate (SMER) of 1.16 were obtained at an air flow rate of 0.016 kg/s and air temperature of 60°C when using the heat pump.  相似文献   

19.
A numerical study has been carried out to investigate the performance of a simple solar desalination system using humidification—dehumidification processes. The desalination system consists of a solar air heater, humidifier, dehumidifier and a circulating air-driving component. The study covers the influence of different environmental, design, and operational parameters on the desalination system productivity. Environmental parameters include solar intensity, ambient temperature and wind speed. Design parameters include the solar heater base insulation, the humidifier and the dehumidifier effectiveness. Operational parameters include air circulation flow rate, feed water rate and temperature. The results indicated that the solar air heater (energy source) efficiency significantly influences system productivity. Increasing the solar intensity and ambient temperature and decreased wind velocity increases system productivity. Increasing the air flow rate up to 0.6 kg/s increases the productivity, after which it has no significant effect. The feed water flow rate has an insignificant influence on system productivity. The surprising result is that the dehumidifier effectiveness has an insignificant influence on system productivity, which has a very important implication for the system's economy. The physical explanation of this finding is given.  相似文献   

20.
《分离科学与技术》2012,47(6):1039-1045
Abstract

A hybrid solar dehumidification air-conditioning system was used to study the absorption of water vapor from moist air by contacting the air with aqueous solutions that contained from 90 to 94% triethylene glycol (TEG). For the packings of 2-inch polypropylene Jaeger Tri-Packs, which have a surface-to-volume ratio of 157 m2/m3 (48 ft2/ft3), the efficiency of dehumidification can reach 93.3%. The environmental air was introduced into the dehumidifier cocurrently flowing with the liquid desiccant, and the liquid desiccant was sprayed on the top of the packing material. The air-to-liquid mass flow ratio was controlled in a range of 0.46 to 1.36. As the moisture was absorbed from air by the TEG solution, the solution was diluted. The regeneration of the solution was carried out in 20-piece (38.8 m2) basin-type solar collectors/regenerators whose regeneration coefficients of performance are above 0.2. Air generated by photovoltaic fans was blown into the solar collectors/regenerators and carried away the water vapor from the evaporation of the aqueous desiccant solution. On the basis of the experimental results, the system performance is acceptable for most applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号