首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates optimization of various competitive adsorption parameters for removal of Cd(II), Ni(II) and Pb(II) from aqueous solutions by commercial activated carbon (AC) using the Taguchi method. Adsorption parameters such as initial metal concentration of each metal ion (C0,i ), initial pH (pH0), adsorbent dosage (m) and contact time (t) in batch technique were studied to observe their effects on the total adsorption capacity of metals onto activated carbon (q tot ). The adsorbent dosage has been found to be the most significant parameter. Interactions between C0,Cd ×C0,Ni , C0,Cd ×C0,Pb and C0,Ni ×C0,Pb have been considered for simultaneous metal ions adsorption. The optimum condition for adsorption of metal ions were obtained with C0,i =100 mg L?1, pH0=7, m=2 g L?1 and t=80 min. Finally, experimental results showed that a multi-staged adsorptive treatment would be necessary to reach the minimal discharge standards of metal ions in the effluent.  相似文献   

2.
The use of chemically modified silica gel N-(1-carboxy-6-hydroxy) benzylidenepropylamine (SiG-CHBPA), ion exchanger for removal and preconcentration of Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in natural water samples collected from River Nile, Mediterranean Sea and other locations followed by their consecutive AAS determination was described. The effects on the percentage of recovered metal ions including mass change of ion exchanger, stirring time, pH of sample solutions and eluent concentration were studied. The distribution coefficient Kd, ml g− 1 and the percentage concentration of the studied metal ions on the ion exchanger at equilibrium, CM,eqm ,% (Recovery, %) were studied as a function of experimental parameters. The logarithmic values of the distribution coefficients, log Kd are 3-6.3. The interfering effects of some foreign ions on the removal, preconcentration and determination of the investigated metal ions were described. The metal-chelates formed between the ion exchanger and the studied metal ions were characterized by IR (absorption and reflectance), UV spectrometry, potentiometric titration and thermal analysis (TG and DTG). The reliability of the present method was confirmed by the comparison with a standard solvent extraction method. The present method is simple and rapidly applicable for the determination of the studied metal ions, ng ml− 1 in different natural water samples.  相似文献   

3.
The purpose of this study was to investigate the effects of the operating parameters, such as pH, initial concentration (Ci), duration of treatment (t), current density (j), interelectrode distance (d) and conductivity (κ) on the treatment of a synthetic wastewater in the batch electrocoagulation (EC)-electroflotation (EF) process. The optimal operating conditions were determined and applied to a textile wastewater. Initially a batch-type EC-EF reactor was operated at various current densities ranging from 11.55 to 91.5 mA/cm2 and various electrode gaps (1, 2 and 3 cm). For solutions with 300 mg/L of silica gel, good turbidity removal (89.6%) was obtained without any coagulant when the current density was 11.55 mA/cm2, and with initial pH at 7.6, conductivity at 2.1 mS/cm: the treatment time was hold for 10 min and the electrode gap was 1 cm. Application of the optimal operating parameters on a textile wastewater showed a high removal efficiency for the following variables: suspended solid (SS) 85.5%, turbidity 76.2%, biological oxygen demand (BOD5) 88.9%, chemical oxygen demand (COD) 79.7%, and color over 93%.  相似文献   

4.
In this study, it was investigated boron removal from boron containing wastewaters prepared synthetically. The experiments in which Amberlite IRA 743, boron specific resin was used was carried out in a batch reactor. The ratio of resin/boron solution, boron concentration, stirring speed and temperature were selected as experimental parameters. The obtained experimental results showed that percent of boron removal increased with increasing ratio of resin/boron solution and with decreasing boron concentration in the solution. Stirring speed and temperature had not significant effects on the percent of total boron removal, but they increased the starting boron removal rate. As a result, it was seen that about 99 % of boron in the wastewater could be removed at optimum conditions. On the other hand, the process kinetics were predicted by using heterogeneous fluid-solid reaction models. It was seen statistically that the kinetics of this process agreed the pseudo- second order model, as follows: XBl(1−XB) = 11,241.5[OH][C]−1.76[S/L]2.17exp(−19,57l.2/RT)t1.24  相似文献   

5.
S. Saeki  F. Wang  Y. Tanaka 《Polymer》2006,47(21):7455-7459
An equation of state for zero internal pressure in rare gas solids and semi-crystalline polymers has been determined based on the empirical functions of thermal pressure coefficient γV with respect to volume at constant pressure. The experimental data of PVT over wide range of temperature and pressure published by Anderson and Swenson and Syassen and Holzapfel for rare gas solids and Olabisi and Simha and Zoller for semi-crystalline polymers are used to evaluate γV. The function of γV with respect to volume determined at constant pressure is given by where V0 is the volume at 0 K, A, ? and c are constants. The function of internal pressure Pi = γVT − P with respect to temperature at constant pressure is determined by converting the function of γV(V) to a function of temperature γV(T). An empirical equation of state for zero internal pressure determined by pressure P, volume V and temperature T at which Pi = 0 is expressed by PV/RT=CDV for rare gas and semi-crystalline polymer where C and D are constants. The practical meaning of the equation of state for Pi = 0 in the semi-crystalline polymers has been discussed.  相似文献   

6.
New vanadate compounds having the molecular structure LixMg1−xV2−xMoxO6 (0 ≤ x ≤ 1) were studied. Six samples were prepared by sol-gel process from precursor using the following ratios of x = 0, 0.2, 0.4, 0.6, 0.8 and 1, respectively. These samples were labeled S1, S2, S3, S4, S5 and S6. The final process of firing occurred at 750 °C for 18 h in air. The prepared materials were characterized by XRD, SEM, IR, electron spin resonance (ESR) and magnetic measurements. The morphologies of S1, S2, S5 and S6 are prismatic as they have monoclinic crystal structures. S3 and S4 differ in the crystal morphology from the other previous samples due to their triclinic crystal lattice structure. IR spectra revealed that the bond lengths of the vanadyl groups νVO, νsy V-O and σV-O increase in the same direction from S1 to S6. The data of the ESR explain the existence of V4+ beside V5+ in S1, S4 and S6 and also presence of Mo5+ with Mo6+ in S4 and S6. S4 exhibited better magnetic susceptibility and saturated magnetization than the other samples. The first specific discharge capacities of the samples were performed. S4 showed the maximum specific capacity of 265 mAh g−1 in comparison with the other samples. Cyclic voltammogram of S4 exhibited the highest current intensity in comparison with the other samples. This sample showed two peaks at 0.53 and 1.3 V versus Li/Li+ characterizing double de-insertions of two lithium atoms from Li1.6Mg0.4V1.4Mo0.6O6−x and Li0.6Mg0.4V1.4Mo0.6O6, respectively. Also, two additional peaks were characterized for the oxidation of Mo5+ to Mo6+ and V4+ to V5+ at 3.5 and 4 V, respectively.  相似文献   

7.
《Ceramics International》2020,46(4):4786-4794
Vanadium dioxide (VO2) is considered to be a promising candidate for energy-efficient smart windows because of its special reversible Metal-Insulator Transition (MIT) near the ambient temperature. However, its use is constrained by its high transition temperature (TC) relative to the room temperature. In this paper, VO2 doped by boron, could achieve an outstanding metal-insulator phase transition property with a low TC (28.1 °C) close to the room temperature. This enhancement strongly contributes to the studies of the VO2-based smart windows. A limit doping level of around 9.0 at% is observed for the boron-doped VO2. Moreover, the particle size is getting smaller and more uniform and the particle distribution becomes more equal and compact with the continued increase in the doping content. Such uniform grain size and grain boundary conditions suppress the extension of the hysteresis loop (ΔT decreases from 25 °C to 7 °C). In addition, the TC first declines with the increase in the boron content and it starts to increase after reaching its minima of 28.1 °C at 6.0 at% doping level. This feature is the consequence of the competition between the inhibition on the phase transition caused by the V5+ and the promotion on the phase transition caused by the heterogeneous defect-nucleation sites. VO2 doped with 6.0 at% boron exhibits a favorable thermochromic performance with ΔTsol of 12.5% and Tlum up to 54.3%, which is promising for the smart windows.  相似文献   

8.
In this work, the channel mobility (μch) of diamond metal-oxide-semiconductor field-effect transistors (MOSFETs) with hole accumulation layer channels was evaluated from the gate-to-channel capacitance and drain conductance for the first time. The FET structure was utilized for the capacitance–voltage (C–V) measurement, and the gate-to-channel capacitance (CGC) under the forward bias condition was proportional to the gate area, as in the case of Si MOSFETs. For the accurate evaluation of the drain conductance, diamond MOSFETs were fabricated on IIa-type diamond films with low boron concentrations (< 1014cm− 3). In a 60-μm gate-length diamond MOSFET, a μch of 145cm2/Vs was obtained, which is comparable to that of a SiC inversion layer.  相似文献   

9.
Zhiyuan Chen  Kazuki Morita 《SILICON》2018,10(5):1809-1817
All the reported thermodynamics analysis implied that ammonia is a promising reagent for removing boron from silicon, but efforts to employ it in silicon refining have failed in practice. As such, there are few reports detailing this process. In this study, this process was analyzed experimentally. Various concentrations of ammonia were introduced to remove boron from silicon in the temperature range of 1200–1550 °C with a total pressure of 1 atm. Boron containing nitrides precipitates were detected in the furnace tube. The effect of ammonia content in the feeding gas was explored. It implied that higher ammonia partial pressures promote the boron removal. The experimental results have suggested that ammonia could remove boron from silicon in the form of volatiles, such as BHx (x = 1, 2, 3) and B3 H 6 N 3, in practice. The reaction-rate constant was limited to 10?6– 10?7 m/s in pure ammonia at 1450 °C. Moreover, a higher ammonia flow rate resulted in lower boron removal ratio. It was indicated that the rate determining steps of boron removal and silicon loss in this process were the chemical reaction at the surface of the melt and the transport of ammonia from gas phase to the surface, respectively. The relationship of the boron-removal rate with temperature followed a “V”-shaped curve, which implied the limit of thermodynamic factors at high temperature and the limit of kinetic factors at temperatures lower than 1300 °C. Based on the analysis results, temperature-programed reaction was designed to promote the boron-removal efficiency doubled. Cu was used to decrease the liquidus temperature of Si based alloy in the process. As a result, more than 80% boron in Si-Cu alloy could be removed.  相似文献   

10.
11.
《Diamond and Related Materials》2003,12(10-11):1908-1911
A heterofullerene in which carbon atoms of the fullerene cage are substituted by heteroatoms (boron and nitrogen) was synthesized by BN substitution reaction of fullerene C60 upon irradiation with a KrF excimer laser at room temperature. The products were purified by a high performance liquid chromatography and analyzed with a double focusing mass and mass/mass spectrometer, revealing that BNC58 (m/z 721) was formed. The existence of boron and nitrogen in the product was confirmed by X-ray photoelectron spectroscopy and 13C NMR analyses. Moreover, 11B NMR spectrum of the sample indicated the existence of BN bond in the compound.  相似文献   

12.
Boron removal from boron containing wastewaters prepared synthetically via the electrocoagulation method was studied. The experiments in which aluminum plate electrode was used were carried out in a batch reactor. The solution pH, initial boron concentration, current density, type of supporting electrolyte, temperature of solution and stirring speed were selected as experimental parameters. The obtained experimental results showed that efficiency of boron removal increased with increasing current density and decreased with increasing boron concentration in the solution. Supporting electrolyte had not significant effects on the percent of total boron removal. pH was very important parameter effecting boron removal and optimum pH was determined to be 8.0. This pH value reached an agreement with activity-pH diagrams for Al+3 species in equilibrium with Al(OH)3 and boron species in aqueous media. As a result of increasing interaction between boron ions and dissolved aluminum ions in solution, the increasing solution temperature increased boron removal efficiency. Increasing stirring speed decreased boron removal efficiency where the increasing stirring speed decreased the capability of floc formation of aluminum ions. As a result, it was seen that about 99% of boron in the wastewater could be removed at optimum conditions. In addition, the process kinetics was predicted by using heterogeneous fluid–solid reaction models. It was seen statistically that the kinetics of this process agreed with the pseudo-second-order model as follows: XB/(l−XB) = 18,241[OH][C]−3.45[CD]7.79[t]1.41[S]−3.65exp[−30,668/RT].  相似文献   

13.
The factors affecting the initial rate of Telon Blue (Acid) dye adsorption onto peat have been investigated. The surface mass transfer coefficients for the rate of dye removal from solution have been determined and correlated as the dimensionless mass transfer term Sh/Sc0.33. The function Sh/Sc0.33 has been correlated with respect to four variables, namely, agitation, initial dye concentration, peat particle size range and the temperature of the dye solution. The mass transfer term varies with T5.5, dp0.13, co?1.1 and R.P.M.0.26; consequently temperature has the most pronounced effect on the mass transfer coefficient.  相似文献   

14.
The paper reports the solid-liquid phase equilibria (SLE), excess molar volume (VE), and molar refraction deviation (ΔR) for binary systems of ethanoic acid with the C3 to C5 carboxylic acids, propanoic, butanoic, and pentanoic acid, which are the main constituents of bio-butanol fermentation broth. The SLE was determined via a synthetic method using a custom-built glass tube at atmospheric pressure, whereas the thermodynamic mixture properties, VE and ΔR were obtained from directly measured density and refractive index using a precision densitometer and refractometer, respectively. All of the SLE that were determined for binary mixtures of ethanoic acid+C3-C5 carboxylic acids showed a single eutectic point and regressed well with the NRTL activity model within 0.6 K of RMSD. The VE values for the same binaries were positive for the entire composition ranges of all the systems, whereas the ΔR values were negative for all the systems. The VE and ΔR were well regressed by polynomial equations, namely Redlich-Kister within 0.006 cm3·mol?1 of the standard deviation for VE and 0.02 cm3·mol?1 for ΔR.  相似文献   

15.
In this paper, the removal of phenol from simulated wastewater was studied using gas–liquid fluidized bed with the Fenton reagent. The factors that affect the removal rate of phenol were investigated, including the initial concentrations of hydrogen peroxide [H2O2] and [Fe2+], the molar ratio of [Fe2+]/[H2O2], pH value, temperatures, reaction time, and the ventilation volume. It was found that the optimal operating conditions existed as: [H2O2] = 12 mmol/L, [H2O2]/[Fe2+] = 4:1, pH = 4, T = 60 °C, reaction time of 30 min, and a ventilation volume of 0.12 m3/h. Under these conditions, the phenol removal rate of about 96% was obtained.  相似文献   

16.
A novel hydrothermal synthesis was developed to prepare carbon-coated lithium vanadium phosphate (Li3V2(PO4)3) powders to be used as cathode material for Li-ion batteries. The structural, morphological and electrochemical properties were investigated by means of X-ray powder diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and constant current charge-discharge cycling. This material exhibits high initial discharge capacity of 178, 173 and 172 mAh g−1 at 0.1, 0.2 and 0.5 C between 3.0 and 4.8 V, respectively. Moreover, it displays good fast rate performance, which discharge capacities of 136, 132 and 127 mAh g−1 can be delivered after 100 cycles between 3.0 and 4.8 V versus Li at a different rate of 1, 2 and 5 C, respectively. For comparison, the electrochemical properties of carbon-coated lithium vanadium phosphate prepared by traditional solid-state reaction (SSR) method are also studied.  相似文献   

17.
A. Jelea  F. Marinelli 《Carbon》2008,46(4):631-643
Density functional calculations were used to study some fundamental features of boron-doped graphite layers (CxBy) and the boron influence on the mechanisms leading to the formation of water molecules on the CxBy graphite like layers. The Langmuir-Hinshelwood reactions leading to water formation on the graphite-like layers containing 12 at% boron take place with activation energies 3-5 times lower than on pure graphite ones. For the Eley-Rideal mechanism, the activation energies are always very low whether or not the graphite contains boron. Similar results were observed for 25 at% B doping. As a consequence, the oxygen and hydrogen can be more easily eliminated from the doped surfaces in the form of water molecules than from the corresponding pure ones. The CxBy layers with high boron content or having accumulations of boron, lose their planar structure. Two such parallel layers strongly interact through the boron atoms with the formation of a B-B bond and the displacement of the boron atoms into the inter-layer space. As a whole the system deviates from the graphite-like structure.  相似文献   

18.
Azo dyes present in industrial effluents represent a hurdle that regular treatments cannot overcome. In this study, the application of ozone and a catalytic (iron oxide) ozone treatment were proposed as a means of degrading aqueous sunset yellow dye. In order to understand the factors involved, a rotatable central composite design was applied using the variables time, initial dye concentration (C0), pH, ozone inlet concentration (O3), and mass of catalyst, which varied in each case. All variables were significant in colour removal. Extremes in pH, lower C0, and higher ozone concentrations are conditions that favour dye degradation. A complete colour loss occurred for certain combinations of these parameters. The application of iron oxide as a catalyst did not present a satisfactory improvement in the reaction rate. Chemical oxygen demand and total organic carbon showed minimum values of 80% and 78%, respectively, for the worst experimental conditions (pH 7.0, C0 of 45 mg · L−1, and 5 g O3 · m−3), while their values were 88% and 83% for the best conditions applied. There was no immobilization of Artemia salina nauplii, even for the experimental run where the maximum concentration of dye of the set was used (45 mg dye · L−1). Ozonation is a promising alternative in the degradation of aqueous sunset yellow dye, being favoured in acidic or basic media, which is especially important since food effluents usually present low pH and show low toxicity. The mathematical model proposed can be useful in the design of wastewater treatment processes.  相似文献   

19.
A liquid-based sol-gel method was developed to synthesize nanocarbon-coated Li3V2(PO4)3. The products were characterized by XRD, SEM and electrochemical measurements. The results of Rietveld refinement analysis indicate that single-phase Li3V2(PO4)3 with monoclinic structure can be obtained in our experimental process. The discharge capacity of carbon-coated Li3V2(PO4)3 was 152.6 mAh/g at the 50th cycle under 1C rate, with 95.4% retention rate of initial capacity. A high discharge capacity of 184.1 mAh/g can be obtained under 0.12C rate, and a capacity of 140.0 mAh/g can still be held at 3C rate. The cyclic voltammetric measurements indicate that the electrode reaction reversibility is enhanced due to the carbon-coating. SEM images show that the reduced particle size and well-dispersed carbon-coating can be responsible for the good electrochemical performance obtained in our experiments.  相似文献   

20.
Co-doped Li3V2−xCox(PO4)3/C (x = 0.00, 0.03, 0.05, 0.10, 0.13 or 0.15) compounds were prepared via a solid-state reaction. The Rietveld refinement results indicated that single-phase Li3V2−xCox(PO4)3/C (0 ≤ x ≤ 0.15) with a monoclinic structure was obtained. The X-ray photoelectron spectroscopy (XPS) analysis revealed that the cobalt is present in the +2 oxidation state in Li3V2−xCox(PO4)3. XPS studies also revealed that V4+ and V3+ ions were present in the Co2+-doped system. The initial specific capacity decreased as the Co-doping content increased, increasing monotonically with Co content for x > 0.10. Differential capacity curves of Li3V2−xCox(PO4)3/C compounds showed that the voltage peaks associated with the extraction of three Li+ ions shifted to higher voltages with an increase in Co content, and when the Co2+-doping content reached 0.15, the peak positions returned to those of the unsubstituted Li3V2(PO4)3 phase. For the Li3V1.85Co0.15(PO4)3/C compound, the initial capacity was 163.3 mAh/g (109.4% of the initial capacity of the undoped Li3V2(PO4)3) and 73.4% capacity retention was observed after 50 cycles at a 0.1 C charge/discharge rate. The doping of Co2+into V sites should be favorable for the structural stability of Li3V2−xCox(PO4)3/C compounds and so moderate the volume changes (expansion/contraction) seen during the reversible Li+ extraction/insertion, thus resulting in the improvement of cell cycling ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号