首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
两级序批式MBR膜污染控制方法研究   总被引:1,自引:1,他引:0  
针对MBR在实际应用过程中存在的同步脱氮除磷效果不佳、膜污染严重等问题,提出两级序批式MBR工艺,对该工艺的膜污染影响因素及控制方法进行了试验研究.结果表明,在MBR中保持适宜的污泥质量浓度对于膜污染的控制有重要的作用,当污泥质量浓度稳定在6~7g·L~(-1)时,膜比流量基本稳定,随着污泥质量浓度的增加,膜比流量逐步降低,当污泥质量浓度超过10g·L~(-1)以后,膜比流量直线下降;投加PAC至1 g·L~(-1)可以增加污泥粒径,减少大分子有机物在膜表面沉积,从而有助于延缓膜污染;序批式间歇运行与空曝相结合的运行方式可以有效降低泥饼层污染及凝胶层污染,使系统在更高膜通量下运行,而膜污染速率却远低于连续流单级好氧MBR系统.  相似文献   

2.
The short-term fouling behavior of forward osmosis (FO) membrane in an osmotic membrane bioreactor (OMBR) was investigated, using NaCl or MgCl2 as the draw solutions. The effect of membrane orientation, mixed liquor suspended solids (MLSS) concentration and draw solution (DS) osmotic pressure on water flux and membrane fouling behaviors was examined, along with the effects of simulated elevated salinity on sludge properties and on membrane fouling. Water flux and membrane fouling were not significantly affected by both MLSS concentration (4.91–12.60 g/L) and osmotic pressure (3.0–15.0 MPa), but were severely affected by elevated salinity, due to changes in activated sludge properties, in particular the increase in extracellular polymeric substances (EPS) and sludge hydrophobicity. MgCl2 as the DS showed more significant influence on activated sludge properties and membrane fouling than NaCl but gave rise to lower salt accumulation. Analyses of the membrane foulants showed that small sludge floc/particles and EPS (in particular, proteins) were enriched in the fouling layer. UPLC–MS/MS analyses of the proteins showed that hydrophobic proteins were the main cause of membrane fouling.  相似文献   

3.
《分离科学与技术》2012,47(7):1447-1466
Abstract

The effect of powdered activated carbon (PAC) addition to the activated sludge (AS) in a membrane bioreactor (MBR) has been investigated. The long term nature of the tests allowed the PAC to gradually incorporate into the biofloc forming biologically activated carbon (BAC). One series of tests involved 4 bench scale (2 L) MBRs operated at sludge retention times (SRTs) of 30 days with PAC inventories of 0, 1, 3 and 5 g/L and steady state biomass concentrations of 12.0±1.0 g/L. The characteristics of the mixed liquors (MLSS) from the 4 reactors were compared. Short term filtration tests, including measurement of specific cake resistance (SCR), flux decline profile, and irreversible fouling resistance in an unstirred cell and “sustainable” flux (by monitoring transmembrane pressure (TMP) rise) in a crossflow cell all showed better filtration performance for the MLSS with BAC compared with the AS alone. In terms of SCR and flux decline profile the 1 g/L PAC addition performed best, but in terms of minimizing irreversible membrane fouling and maximizing “sustainable” flux the 5 g/L PAC was best. All 4 systems showed lower total organic carbon (TOC) in the permeate compared to the bioreactors, but the lowest permeate TOC (and the best removal) was for the highest PAC loading.

The benefit of PAC addition was confirmed in a second series of tests with two 20 L MBRs with submerged hollow fibers, one operated without PAC, the MBR(AS), and the other with 5 g/L PAC, the MBR(BAC). For an SRT of 30 days (which involved 3.3% sludge wastage per day and 3.3% new PAC addition per day) and a fixed flux of 21 L/m2hr the MBR(AS) showed a TMP rise of about 2.4 kPa/day whereas the MBR(BAC) showed a rise of only 0.8 kPa/day. However when the MBRs were operated without wastage the performance of the MBR(BAC) was worse than the MBR(AS). Thus the improved performance of the MBR(BAC) requires regular replenishment of aged BAC with fresh PAC.  相似文献   

4.
动态膜生物反应器(DMBR)是一种具有广泛应用前景的污水处理新技术,与传统膜生物反应器(MBR)相比,处理效果相当且膜通量更高、膜污染更容易控制。简要分析了自生动态膜及预涂动态膜的形成过程和再生过程,并从膜材料、活性污泥的性质以及运行条件等方面综述了膜污染影响因素的研究进展,指出DMBR研究应用中存在的问题及发展方向。  相似文献   

5.
《分离科学与技术》2012,47(7):1265-1278
Abstract

Fouling of membrane bioreactor (MBR) has been studied intensively. Because of the high concentration of carbonates, scaling can be a serious problem in anaerobic bioreactor, which attracts little attention. In this study, the wastewater was treated with an anaerobic process followed by either a submerged or a side‐stream aerobic membrane reactor. The wastewater was spiked with calcium to investigate the effect of scaling on membrane filtration. Very little scaling was detected in the external membrane system (the side‐stream MBR). Results from chemical cleaning of internal membrane system indicated that the flux decline caused by membrane scaling was far more severe than that by membrane fouling. However, the flux decline from membrane scaling can be effectively recovered by the chemical cleaning of EDTA and NaOCl.  相似文献   

6.
在采用膜生物反应器(MBR)处理染料废水的过程中,通过对活性污泥进行终端过滤来反映膜污染机理,着重考察了膜过滤的形式、膜通量变化和膜污染的形成。污泥的终端过滤过程严格符合沉积过滤定律;膜通量随过滤时间呈指数衰减趋势,并在几分钟内就达到相对稳定值;扫描电镜照片也证实了膜污染主要是膜面沉积层引起的。  相似文献   

7.
膜生物反应器中膜污染影响因素的研究进展   总被引:2,自引:1,他引:1  
文章综述了膜生物反应器(MBR)运行过程中膜污染影响因素的研究现状和进展。膜污染会导致膜通量下降、系统运行成本增加等问题,是限制MBR进一步发展的瓶颈。从膜元件固有性质、膜分离操作条件以及活性污泥混合液性状等3个方面,分析了影响膜污染发展的主要因素,论述了各因素与膜污染的具体关系。各因素之间互相作用,直接或间接影响膜污染,其中膜材质、膜孔径、膜通量、曝气量、污泥组分、粒径分布(PSD)、胞外聚合物(EPS)、溶解性微生物产物(SMP)等为重要影响因素。  相似文献   

8.
基于上海城镇污水处理厂AAO-MBR膜工艺长期运行中膜不可逆污染严重、离线化学清洗难以恢复理想通量的问题,对其清洗方式进行改进。在原清洗方式的基础上增加草酸二次清洗,探究污染膜产水能力恢复情况,并通过中试试验进行验证。结果表明:膜清洗方式改进后,离线清洗对膜污染物的去除更加彻底,清水通量可恢复至新膜的95.1%,较原清洗方式提高了27.2%。在相同通量下中试运行24 d后,膜运行压力比原清洗方式低18.2 kPa,膜污染速率明显减慢。研究通过改进MBR长期运行平板膜的污染物清洗方法,为今后MBR污水厂膜清洗提供参考,具有较好的工程指导意义。  相似文献   

9.
Membrane fouling and chemical cleaning in water recycling applications   总被引:2,自引:0,他引:2  
Fouling and subsequent chemical cleaning are two important issues for sustainable operation of nanofiltration (NF) membranes in water treatment and reuse applications. Fouling strongly depends on the feed water quality, especially the nature of the foulants and ionic composition of the feed water. Consequently, appropriate selection of the chemical cleaning solutions can be seen as a critical factor for effective fouling control. In this study, membrane fouling and chemical cleaning under condition typical to that in water recycling applications were investigated. Fouling conditions were achieved over approximately 18 h with foulant cocktails containing five model foulants namely humic acids, bovine serum albumin, sodium alginate, and two silica colloids in a background electrolyte solution. These model foulants were selected to represent four distinctive modes of fouling: humic acid, protein, polysaccharide, and colloidal fouling. Three chemical cleaning solutions (alkaline solution at pH 11, sodium dodecyl sulphate (SDS), and a combination of both) were evaluated for permeate flux recovery efficiency. The results indicated that with the same mass of foulant, organic fouling was considerably more severe as compared to colloidal fouling. While organic fouling caused a considerable increase in the membrane surface hydrophobicity as indicated by contact angle measurement, hydrophobicity of silica colloidal fouled membrane remained almost the same. Furthermore, a mechanistic correlation amongst cleaning efficiency, characteristics of the model foulants, and the cleaning reagents could be established. Chemical cleaning of all organically fouled membranes by a 10 mM SDS solution particularly at pH 11 resulted in good flux recovery. However, notable flux decline after SDS cleaning of organically fouled membranes was observed indicating that SDS was effective at breaking the organic foulant—Ca2+ complex but was not able to effectively dissolve and completely remove these organic foulants. Although a lower permeate flux recovery was obtained with a caustic solution (pH 11) in the absence of SDS, the permeate flux after cleaning was stable. In contrast, the chemical cleaning solutions used in this study showed low effectiveness against colloidal fouling. It is also interesting to note that membrane fouling and chemical cleaning could permanently alter the hydrophobicity of the membrane surface.  相似文献   

10.
膜生物反应器中污泥特性对膜污染的影响研究   总被引:14,自引:0,他引:14  
膜生物反应器(MBR)是膜技术与污水生物技术的组合工艺,与传统污水处理工艺相比具有许多优点,但膜污染目前仍是限制MBR广泛应用的突出问题。有效的膜污染防治技术,可以增加膜通量,增强系统稳定性,减少系统维护和运行费用。在膜过滤过程中,污泥混合液的特性对于膜污染具有重要作用。近年来围绕污泥特性对膜污染的防治问题取得了许多研究成果,膜污染的数学模型研究也得到了很大发展。  相似文献   

11.
膜生物反应器(MBR)是一项高效的污水处理与回用新技术,膜污染是MBR的主要问题,它限制了MBR的推广和应用.从膜性质、操作条件和活性污泥混合液性质3方面系统论述了MBR中膜污染的影响因素,着重针对各影响因素总结减缓膜污染的调控措施.并指出采取有效、合理的调控措施可有效减缓膜污染,使其在污水处理与回用领域得到更广泛的应...  相似文献   

12.
Influent chemical oxygen demand/nitrogen (COD/N) ratio is used to control fouling in membrane bioreactor (MBR) systems. However, COD/N also affects the physicochemical and biological properties of MBR biomass. The current study examined the relationship between COD/N ratio in feed wastewater and extracellular polymeric substances (EPS) production in MBRs. Two identical submerged MBRs with different COD/N ratios of 10:1 and 5:1 were operated in parallel. The cation concentration and floc-size of the sludge were measured. The composition and characteristics of bound EPS and soluble microbial products (SMP) under each COD/N ratio were also examined. Batch tests were conducted in 1000 mL bottles to study the process of the release of foulants from the sludge when 1 g of (NH4+-N)/L was added. Results showed that the influent COD/N ratio could change the physicochemical properties of EPS and SMP. Moreover, excessive NH4+ in the supernatant could facilitate the role of NH4+ as a monovalent cation, the replacement of the polyvalent cation in bound EPS, and even the extraction of EPS components from the surface of the sludge to form new SMP.  相似文献   

13.
《分离科学与技术》2012,47(15):3571-3596
Abstract

Membrane bioreactor (MBR) has been deemed to be a promising technology for wastewater treatment and reclamation; however, the MBR filtration performance inevitably decreases with filtration time attributed to the deposition of soluble and particulate materials onto and into the membrane under the interactions between activated sludge components and the membrane. Cake layer formation on membrane surfaces has been a major challenge in the operation of MBRs under supra-critical flux operation, and/or caused by uneven distribution of aeration intensities, etc.; however, it was argued that a thin cake layer might improve filtration operation by some researchers. This paper provides a critical review on the formation mechanisms, properties, the role of sludge cake in membrane filtration, and the corresponding strategies of controlling cake fouling in MBRs. Drawbacks and benefits of the formation of sludge cake were also discussed in order to better understand the characteristics and role of sludge cake formation in MBRs.  相似文献   

14.
The objectives of this research were to investigate the combined and individual influence of hydrophobic and hydrophilic fractions of NOM on the fouling of thin-film composite nanofiltration (NF) membranes, and also the roles of solution chemistry on the permeate flux and fouling. Combined fouling is compared to the individual fouling behaviors (i.e., alginate or humic acid alone).Experiments were conducted using a “cross-flow” pilot-scale membrane unit with a full circulation mode. Fouling experiments were performed with individual and combined humic acid and alginate.The results demonstrated that increasing organic concentration increased greatly the rate and extent of flux reduction. Individual alginate fouling was more detrimental than individual humic acid fouling, and alginate exhibited greater flux decline than humic acid fouling alone at the same conditions. A higher flux decline was observed with increasing proportions of aliginate in combined fouling. In other word, there are antagonistic effects during combined fouling because the charge functional groups of two above foulants are negative and increase electrostatic repulsion between two foulants and also foulant-membrane. The flux reduction increased with increasing ionic strength, foulant concentrations, and with lower pH. This observation implies the importance of interaction between various foulants for deeper understanding of fouling phenomena. The membrane fouling was largely dependent on organic properties and fractions.  相似文献   

15.
通过投加粉末活性炭(PAC)/颗粒活性炭(GAC)改善污泥混合液性质从而减缓膜污染是膜生物反应器(MBR)领域的研究热点,重点介绍了最近五年有关活性炭与MBR结合处理不同类型废水的研究进展,投加PAC/GAC对MBR处理能力的影响,对减缓膜污染的作用,尤其是结合动态膜(DM)论述对污泥性质的改善.重点讨论了活性炭在好氧...  相似文献   

16.
《分离科学与技术》2012,47(7):1467-1474
Abstract

Membrane biofouling via microbial products limits the feasibility of utilizing membrane bioreactor (MBR) for treating wastewater. Fouling layer would be built up when activated sludge was filtered with a mixed cellulose ester membrane. This study probed the three‐dimensional distributions of protein, α‐polysaccharide, and β‐polysaccharide in fouling layer using fluorescently labeled lectins and fluorescein isothiocyanate (FITC) as staining agents in combination with confocal laser scanning microscopy (CLSM). These extracellular polymeric substances (EPS) distributed heterogeneously in the fouling layer, with α‐polysaccharide being concentrated close to the membrane surface. The flow pattern yielded in the fouling layer determines the filtration resistance of biofouling.  相似文献   

17.
A single submerged membrane bioreactor (MBR) for nitrification of ammonium and a pre-denitrification MBR process for total nitrogen (TN) removal were investigated in comparison. A single nitrifying MBR was fed with synthetic ammonium wastewater of up to 900 mgN/l without organics so that the MBR was maintained as a pure nitrifying system. A high nitrifying capacity around 1.8 kgNH4-N/m3/day was achieved while keeping the ammonium oxidation rate above 98%. Sludge volume index (SVI) gradually decreased down to less than 50 indicating good settleability of nitrifying sludge. The increase of suction pressure was less than 5 cm Hg over 7-months of operation. TN removal efficiency was determined in a pre-denitrification configuration with an anoxic reactor. Synthetic wastewater of 1200 mgCOD/l and 200 mgN/l was fed to the system at loads of 2.4 kgCOD/m3/day and 0.4 kgN/m3/day, respectively. As the internal recycle ratio from aerobic to anoxic zone increased from 2 to 6, TN removal efficiency was enhanced from 70 ± 9 to 89 ± 3%. With the sludge concentration of around 12,000 mg/l, SVI was highly fluctuated from 60 to 350 indicating the partial deterioration of sludge settleability. The suction pressure after 8 months of operation increased to above 10 cm Hg which is higher than that in a single nitrifying MBR. The concentration of extracellular polymeric substances (EPS), especially for carbohydrate content, was higher in the operation of a pre-denitrification MBR process than in a single nitrifying MBR. It is likely that the sludge characteristic such as settleability is related with membrane fouling but, further extensive study is needed. The performance of a pre-denitrification MBR process was also verified with real petrochemical nitrogen wastewater.  相似文献   

18.
Air sparging is recognized as an effective way to increase permeate flux in membrane filtration processes. The application of air sparging with an external-loop airlift ceramic membrane bioreactor was studied at different gas flow rates, biomass concentrations and suction pressures. A 180% increase in permeate flux was obtained while filtering a 2 g/L activated sludge wastewater suspension with the airlift cross-flow operation for Ug=0.21 m/s. The mechanism of flux enhancement in the case of slug flow in tubular membrane was discussed. The region near the gas slug was divided into three different zones: falling film zone, wake zone and remaining liquid slug zone. Air sparging significantly lowered cake thickness and consequently cake resistances for the wake region and the falling film region. A novel model combining hydrodynamic of gas-liquid two-phase flow and cake resistance was developed to simulate the process. The model was validated with experimental data with an error of 8.3%.  相似文献   

19.
膜生物反应器(MBR)是一种新型污水处理器,对生活污水处理效果显著,在使用过程中不可避免地会产生污染。为此,对膜生物反应器处理模拟生活污水的膜污染和清洗方法进行了研究,通过红外光谱分析了活性污泥性质的变化,利用扫描电镜分析了中空纤维膜表观结构的变化,探讨了膜污染的机理。结果表明,细菌滋生和污泥沉积造成了膜污染,泥饼层阻力占膜总阻力的89.86%,是膜污染的主要组成部分,水力清洗结合化学清洗可以很好地恢复膜的比通量。  相似文献   

20.
Filtration performance and fouling of nanofiltration (NF) and reverse osmosis (RO) membranes in the treatment of dairy industry wastewater were investigated. Two series of experiments were performed. The first one involved a NF membrane (TFC-S) for treating the chemical-biological treatment plant effluents. The second one used a RO membrane (TFC-HR) for treating the original effluents from the dairy industry. The permeate flux was higher at higher transmembrane pressures and higher feed flowrates. The curves of permeate flux exhibited a slower increase while the feed flowrate decreased and the pressure increased. Membrane fouling resulted in permeate flux decline with increasing the feed COD concentration. Furthermore, the flux decline due to the COD increase was found higher at higher pressures for both NF and RO membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号