首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conduction-cooled Peltier current leads (PCLs) are optimized in a superconducting magnetic system. Optimum geometric factors, viz. the ratio of length to cross-sectional area, of both the copper lead and thermoelectric element, are simultaneously found to minimize the heat leak per PCL. A rigorous thermodynamic temperature-entropy (T-s) diagram is constructed. The heat leak as well as the total input power of both PCLs and converntional all-copper leads can be easily identified from the rectangular areas on the simple 2-D T-s plane.  相似文献   

2.
X. C. Xuan  K. C. Ng  C. Yap  H. T. Chua 《低温学》2002,42(12):779-785
Electronic devices such as infrared detectors in remote sensing instruments are frequently placed in cryogenic vacuum systems, such that the ratio of signal to noise can be enhanced. The heat leak of leads supplying usually small electric current to these electronic devices is a critical issue in system designs. Cu is a typical material for current leads. In this work, however, we suggest employing the Peltier current lead to lower the heat leak. It comprises a thermoelectric element and a Cu lead at the hot and cold ends, respectively. In considering the heat radiation between Cu leads and the vacuum vessel, both all-Cu and Peltier current leads are optimised so as to minimise their resulting heat leaking into cryogenic vacuum systems. Moreover, temperature–entropy (Ts) diagrams are constructed to track the actual thermodynamic processes in the two types of current leads. The heat leak of a current lead in the presence of heat radiation can be easily identified from the simple 2-D Ts plane. It is also proved that the effect of heat radiation on the heat leak of current leads is usually negligible.  相似文献   

3.
Eun Soo Jeong 《低温学》2005,45(7):516-522
A theoretical investigation for optimization of conduction-cooled Peltier current leads is undertaken. A Peltier current lead (PCL) is composed of a thermoelectric element (TE), a metallic lead and a high Tc superconductor (HTS) lead in the order of decreasing temperature. Mathematical expressions for the minimum heat flow per unit current crossing the TE-metal interface and that flowing from the metal lead to the joint of the metal and the HTS leads are obtained. It is shown that the temperature at the TE-metal interface possesses a unique optimal value that minimizes the heat flow to the joint. It is also shown that this optimal value depends on the material properties of the TE and the metallic lead but not the joint temperature nor electric current. Optimal geometric factors, viz. the ratio of the length to cross-sectional area, of both the TE and the metallic lead are obtained for various joint temperatures. A design procedure for optimizing PCLs is also proposed.  相似文献   

4.
An experimental investigation using a Peltier thermoelectric cooler (TEC) to cool down a cryoprobe for cryosurgery was performed. Two prototypes of cryosurgery devices consisting of 5- and 6-stage TEC modules were analyzed using a variety of electrical voltages, circulating thermostatic bath (CTB) temperatures, and heat exchanger configurations to obtain an optimum cold side temperature and temperature differences between sides of the modules. To increase the heat exchanges at the hot side, a heat pipe system with a water block was used. Using an electric voltage of 12 V and a CTB temperature of 273.55 K, a cryogenic temperature of 177.09 K and a temperature difference of 99.87 K were achieved. These results indicate that the TEC module can be an effective cooling source for cryosurgery. The prototype has shown potential for clinical trials.  相似文献   

5.
The coupled transport of heat and electrical current, or thermoelectric phenomena, can strongly influence the temperature distribution and figures of merit for phase-change memory (PCM). This paper simulates PCM devices with careful attention to thermoelectric transport and the resulting impact on programming current during the reset operation. The electrothermal simulations consider Thomson heating within the phase-change material and Peltier heating at the electrode interface. Using representative values for the Thomson and Seebeck coefficients extracted from our past measurements of these properties, we predict a cell temperature increase of 44% and a decrease in the programming current of 16%. Scaling arguments indicate that the impact of thermoelectric phenomena becomes greater with smaller dimensions due to enhanced thermal confinement. This work estimates the scaling of this reduction in programming current as electrode contact areas are reduced down to 10 nm × 10 nm. Precise understanding of thermoelectric phenomena and their impact on device performance is a critical part of PCM design strategies.  相似文献   

6.
半导体制冷器工作参数的理论分析   总被引:3,自引:0,他引:3  
从求解导热微分方程出发,通过合理的简化,将半导体制冷器电臂中的传热问题视为一维稳态导热,并把帕耳贴热看成是电臂冷端面的均匀有限热流,而焦耳热是电臂中的内热源,推导出半导体制冷器的理论工作参数,直接给出焦耳热在电臂冷端和热端的分配情况,无需任何假定,最后对实际工作环境下的半导体制冷器的工作状态作出简略分析。  相似文献   

7.
A solar-thermoelectric liquid chiller (STLC) system is constructed and characterized using both theoretical and experimental analyses. A cold-plate (plate and tube type) heat exchanger, attached to the cold side of the STLC system, is utilized for removing the heat from the circulating water in the system. Analytical models include the thermoelectric Peltier effect, thermal convections in air and water, and conductions within the solid parts of the STLC system. Proposed analytical models are used to calculate different performance parameters (e.g., heat removal rate and coefficient of performance) of STLC system at different input electrical currents, temperature differences (between the bulk mean temperature of the liquid and the surrounding environmental temperature), and flow rates. Optimum values of the electrical current are calculated to achieve maximum heat removal rates for a wide range of temperature differences. It is observed that the heat removal rate by the STLC system increases with increasing bulk mean temperature of the water for considered ambient temperature conditions. However, small changes in the heat removal rate are observed when liquid flow rate changes inside the cold-plate heat exchanger. A prototype of the conditioned space is constructed to perform the experimental analysis. Experimental analysis includes the monitoring of the cooling down period of the water and conditioned space to achieve desired temperatures.  相似文献   

8.
Inspired by the promising applications in thermopower generation from waste heat and active on‐chip cooling, the thermoelectric and electrothermal properties of graphene have been extensively pursued by seeking ingeniously designed structures with thermoelectric conversion capability. The graphene wrinkle is a ubiquitous structure formed inevitably during the synthesis of large‐scale graphene films but the corresponding properties for thermoelectric and electrothermal applications are rarely investigated. Here, the electrothermal Peltier effect from the graphene wrinkle fabricated on a germanium substrate is reported. Peltier cooling and heating across the wrinkle are visualized unambiguously with polarities consistent with p‐type doping and in accordance with the wrinkle spatial distribution. By direct patterning of the nano‐bubble structure, the current density across the wrinkle can be boosted by current crowding to enhance the Peltier effect. The observed Peltier effect can be attributed to the nonequilibrium charge transport by interlayer tunneling across the van der Waals barrier of the graphene wrinkle. The graphene wrinkle in combination with nano‐bubble engineering constitutes an innovative and agile platform to design graphene and other more general two‐dimensional (2D) thermoelectrics and opens the possibility for realizing active on‐chip cooling for 2D nanoelectronics with van der Waals junctions.  相似文献   

9.
The objective of this study is to produce the thermoelectric (TE) module called as a Peltier module or element using new and promising materials that work at high temperature for generation of electricity with thermoelectric energy conversion from waste heat at high temperatures. Peltier modules used commercially nowadays can work at relatively low temperatures and their efficiency increase in proportion to the temperature difference between the surfaces of the modules. They consist of a pair of p- and n-type semiconductor. In this study, calcium cobalt oxide was chosen as a p-type semiconductor whilst zinc oxide was chosen as n-type semiconductor. Pure and aluminum-doped zinc oxide and silver-doped calcium cobalt oxide powders were synthesized via sol–gel processing successfully. The obtained powders were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fourier transform infrared (FTIR), differential thermal analysis-thermogravimetry (DTA-TG), and scanning electron microscopy (SEM). In addition, the particle size distribution of the powders obtained via sol–gel processing was determined using a particle size analyzer. One and two leg oxide thermo-electric modules consisting of one pair of p-type 0.03 percent silver doped calcium cobalt oxide and n-type 0.02 percent aluminum doped zinc oxide bulks of 25 square millimeter cross-section and 3 millimeter heights were constructed. The thermoelectric module constructed was tested at high temperatures, and compared to other similar oxide modules reported in literature. Ultimately, the thermal stress and alteration of thermal stress depending on the leg length and side length of semiconductors were calculated using the finite element analysis (FEA) model in ANSYS 15.0 software. According to the results of the analysis, TE module was optimized in terms of mechanical behavior.  相似文献   

10.
A three-dimensional numerical simulation study for the liquid phase electro epitaxial growth kinetic of GaAs is presented. The kinetic model is constructed considering (i) the diffusive and convective mass transport, (ii) the heat transfer due to thermoelectric effects such as Peltier effect, Joule effect and Thomson effect, (iii) the electric current distribution with electromigration and (iv) the fluid flow coupled with concentration and temperature fields. The simulations are performed for two configurations namely (i) epitaxial growth from the arsenic saturated gallium rich growth solution, i.e., limited solution model and (ii) epitaxial growth from the arsenic saturated gallium rich growth solution with polycrystalline GaAs feed. The governing equations of liquid phase electro epitaxy are solved numerically with appropriate initial and boundary conditions using the central difference method. Simulations are performed to determine the following, a concentration profiles of solute atoms (As) in the Ga-rich growth solution, shape of the substrate evolution, the growth rate of the GaAs epitaxial film, the contributions of Peltier effect and electromigration of solute atoms to the growth with various experimental growth conditions. The growth rate is found to increase with increasing growth temperature and applied current density. The results are discussed in detail.  相似文献   

11.
Yang Li  Rongshun Wang  Caili Wang 《低温学》2010,50(6-7):367-372
The diminishing of heat leak into cryogenic vessels can prolong the storage time of cryogenic liquid. With the storage of cryogenic liquid reducing, the heat leak decreases, while the actual storage time increases. Compared with the theoretical analysis, the numerical simulation can more accurately calculate the heat transfer and temperature distribution in the vessel with complex structure. In this paper the steady state heat leak into cryogenic vessels with different liquid level height is analyzed using a finite element model. And liquid nitrogen boil-off method was adopted in experiments to validate the result of numerical simulation. Experimental results indicate favorable agreement with numerical simulation by ANSYS software. The effect of liquid level on heat leak into the cryogenic vessel can be considered in calculation of storage time and structure design.  相似文献   

12.
半导体制冷和泵热循环机理的研究   总被引:3,自引:0,他引:3  
在半导体制冷和泵热循环中,紧紧抓住能量的载体--电子这一关键环节建立热力学系统。根据非平衡态统计力学的结果,详细讨论了汤姆逊热与焦耳热和傅里叶热的关系,提出汤姆逊热就是焦耳热和载流子在有温度梯度的均匀半导体内运动时输运的热运动能量之和。论证了组成半导体制冷和泵热循环的基本物理过程是Peltier效应和Thomson效应及电源所提供的非静电力对电子的作功过程。而焦耳热和格波所引起的傅里叶热不是电子循  相似文献   

13.
Multi-stage thermoelectric coolers offer larger temperature differences between heat source and heat sink than single-stage thermoelectric coolers. In this paper, a pyramid-type multi-stage cooler is analyzed, focusing on the importance of maximum attainable target heat flux and overall coefficient of performance, COP. Having considered the COP and the thermal resistance of a heat sink as key parameters in the design of a multi-stage thermoelectric cooler, analytical formulas for COP and heat sink thermal resistance versus working electrical current are derived. For a fixed cooling target heat flux, the ratio of the heat sink thermal resistance to the respective single-stage value and the attainable COP in a cascaded cooler are determined as a function of the number of stages. Numerical simulations clearly indicate that the thermal resistance of the hot side heat sink is the controlling factor in determining the overall performance of a multi-stage thermoelectric cooler.  相似文献   

14.
Infrared instruments (IR) for deep space imaging missions, such as the James Webb Space Telescope (JWST) and Planck, require cryogenic cooling for proper operation of their focal plane arrays (FPA) in far infrared and sub-millimeter wavelength ranges. The FPA is sometimes located meters away from the spacecraft. To meet such remote cooling requirement, a Joule-Thomson (J-T) loop becomes a convenient choice for either direct cooling for the FPA or for serving as a heat sink for a cascade cooling system. The refrigerant lines of the JT loop inevitably suffer parasitic heat leak primarily due to IR backload as they traverse from the spacecraft to the FPA. An actively cooled JT loop using a mechanical pre-cooler located at the spacecraft will experience the highest parasitic heat leak since the lines are cold through the entire length whereas a passively cooled JT loop can utilize a number of radiators to cool the lines down gradually in stages and hence reduce the heat leak. In addition to savings in power and mass, a passive cooler offers consistent and predictable performance with practically no performance degradation in a thermally stable orbit, such as one around the Sun-Earth L2 point. Passive coolers are less popular in low temperature applications when their cooling capacity diminishes rapidly in proportion to T4 until the temperature reaches a point where either the parasitic heat leak becomes so significant or its size becomes so excessive that the passive cooling scheme becomes impractical. Despite the limited capacity, passive cooling may still prove to be a viable alternative to active cooling depending on the operating temperature and heat dissipation rate of the FPA. The current effort aims at evaluating the merit of using passive coolers as an alternative to using a mechanical cooler for pre-cooling of a JT loop for remote IR instrument cooling. A parametric study is conducted to explore the merits of passive cooling of a JT loop in a temperature range below 30 K. Correlations between cooling capacity, heat leak from supporting structure, and the operating temperature are investigated to provide design guidelines. Radiator staging options will also be presented and discussed.  相似文献   

15.
低温技术在高温超导(HTS)电力系统中的应用   总被引:1,自引:0,他引:1  
阐述低温技术在超导电力系统中的制冷机支接冷却技术、液氮迫流循环系统以及基于Peltier材料的Peltier冷却方法等几个重要应用。指出用微低温工程学(micro-nanocryogenics)观点研究三维低温界面层和界面层热阻对高温超导动态稳定性的影响是高温超导电力应用低温技术的研究热点及重要研究方向之一。  相似文献   

16.
Current leads in cryogenic systems are a major heat source which eventually affects the entire system. It has been shown in recent years that Peltier elements are useful in reducing incoming heat into the cold system. In this article we present a new tapered cone-like configuration of the Peltier Current Leads which increases the power saving. This configuration is compared to the standard cylindrical configuration utilizing advanced ANSYS simulations. The simulations show an additional power saving of 4% when using the tapered lead configuration.  相似文献   

17.
In this study, experimental and theoretical studies on thermoelectric cooler (TEC) performance for cooling a refrigerated object (water in a tank) were performed. Microchannel heat sinks fabricated with etched silicon wafers were employed on the TEC hot side to dissipate heat. The measurements show that the temperature of the refrigerated object decreased with time. A theoretical model based on a lumped system was established to predict the transient behavior of the variation in temperature for the refrigerated object with time. The theoretical predicted temperature variation was in good agreement with the measured data. The relationship among the heat sink thermal resistances, TEC electric current input and minimum refrigerated objected temperature was examined based on the theoretical model. The calculated minimum temperatures were showed for the several cases of heat sink thermal resistance on the TEC hot side and electric current input. The minimum temperature can be obtained by increasing the electrical current input and decreasing the heat sink thermal resistance.  相似文献   

18.
对低温容器分别在环境温度下和有外热源条件下进行热响应实验,发现低温容器静态蒸发率呈周期性变化,但变化周期仅为环境温度变化周期的1/2,环境温度的周期性变化并非是使高真空多层绝热容器蒸发率测量时产生周期变化的主要因素。在进行外热源加热容器外壁实验时发现,外壁温度变化并没有对低温容器的漏热量产生明显的影响,低温容器的绝热层对低温容器外壁面的温度波动有较强的衰减及延迟作用,热量在传入的过程中发生了剧烈的衰减,使容器内壁近似形成一个"等温层",从而使高真空多层绝热低温容器的漏热量几乎不受外界环境温度变化的影响。  相似文献   

19.
曹海山 《制冷学报》2022,43(4):26-34
热电制冷技术是一种通过珀耳贴效应直接利用电能实现制冷的固态制冷技术。与蒸气压缩式制冷相比,热电制冷具有尺寸任意缩放、无振动、可靠性高和控温精度高等优点。本文从热电制冷的发展简史和基本原理出发,重点介绍了热电材料、制冷机结构、功能层界面以及热端散热器等影响热电制冷机性能因素的研究进展,并根据热电制冷的优势特性介绍了热电制冷的应用,最后对热电制冷技术的研究进行了总结和展望。  相似文献   

20.
A new configuration of combined thermoelectric device, two-stage thermoelectric refrigerator driven by two-stage thermoelectric generator, is proposed in this paper. The thermodynamic model of the combined device is built by using non-equilibrium thermodynamic theory. The analytical formulae for the stable working electrical current, the cooling load versus the working electrical current, and the coefficient of performance (COP) versus the working electrical current of the combined device are derived. For the fixed total number of thermoelectric elements of the combined device, the allocations of the thermoelectric element pairs among the two thermoelectric generators and the two thermoelectric refrigerators are optimized for maximum cooling load and COP, respectively. The influences of the heat source temperature of the two-stage thermoelectric generator and the heat source (cooling space) temperature of the two-stage thermoelectric refrigerator on the optimal performance of the combined thermoelectric device are analyzed by detailed numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号