共查询到14条相似文献,搜索用时 9 毫秒
1.
Stoichiometric compound of copper indium sulfur (CuIn5S8) was synthesized by direct reaction of high purity elemental copper, indium and sulfur in an evacuated quartz tube. The phase structure of the synthesized material revealed the cubic spinel structure. The lattice parameter (a) of single crystals was calculated to be 10.667 Å. Thin films of CuIn5S8 were deposited onto glass substrates under the pressure of 10−6 Torr using thermal evaporation technique. CuIn5S8 thin films were then thermally annealed in air from 100 to 300 °C for 2 h. The effects of thermal annealing on their physico-chemical properties were investigated using X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), optical transmission and hot probe method. XRD studies of CuIn5S8 thin films showed that as-deposited films were amorphous in nature and transformed into polycrystalline spinel structure with strong preferred orientation along the (3 1 1) plane after the annealing at 200 °C. The composition is greatly affected by thermal treatment. From the optical transmission and reflection, an important absorption coefficient exceeds 104 cm−1 was found. As increasing the annealing temperature, the optical energy band gap decreases from 1.83 eV for the as-deposited films to 1.43 eV for the annealed films at 300 °C. It was found that CuIn5S8 thin film is an n-type semiconductor at 300 °C. 相似文献
2.
J. Olejní?ek L.E. FlanneryS.A. Darveau C.L. ExstromŠ. Kment N.J. IannoR.J. Soukup 《Journal of Alloys and Compounds》2011,509(41):10020-10024
CuIn1−xAlxS2 thin films (x = 0, 0.09, 0.27, 0.46, 0.64, 0.82 and 1) with thicknesses of approximately 1 μm were formed by the sulfurization of DC sputtered Cu-In-Al precursors. All samples were sulfurized in a graphite container for 90 min at 650 °C in a 150 kPa Ar + S atmosphere. Final films were studied via X-ray diffraction (XRD), scanning electron microscopy (SEM) and micro-Raman spectroscopy. It was found that all samples were polycrystalline in nature and their lattice parameters varied slightly nonlinearly from {a = 5.49 Å, c = 11.02 Å} for CuInS2 to {a = 5.30 Å, c = 10.36 Å} for CuAlS2. No unwanted phases such as Cu2−xS or others were observed. Raman were recorded at a room temperature and the most intensive and dominant A1 phonon frequency varied nonlinearly from 294 cm−1 (CuInS2) to 314 cm−1 (CuAlS2). 相似文献
3.
N.L. Amsei Júnior A.Z. Simes R.F.C. Pianno S.M. Zanetti E. Longo J.A. Varela 《Journal of Alloys and Compounds》2008,458(1-2):500-503
SrBi2(Ta0.5Nb0.5)2O9 (SBTN) thin films were obtained by polymeric precursor method on Pt/Ti/SiO2/Si(1 0 0) substrates. The film is dense and crack-free after annealing at 700 °C for 2 h in static air. Crystallinity and morphological characteristic were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FEG-SEM) and atomic force microscopy (AFM). The films displayed rounded grains with a superficial roughness of 3.5 nm. The dielectric permittivity was 122 with loss tangent of 0.040. The remanent polarization (Pr) and coercive field (Ec) were 5.1 μC/cm2 and 96 kV/cm, respectively. 相似文献
4.
Nanocrystalline, uniform, dense, and adherent cerium oxide (CeO2) thin films have been successfully deposited by a simple and cost effective spray pyrolysis technique. CeO2 films were deposited at low substrate and annealing temperatures of 350 °C and 500 °C, respectively. Films were characterized by differential thermal analysis, X-ray diffraction, scanning electron microscopy, atomic force microscopy; two probe resistivity method and impedance spectroscopy. X-ray diffraction analysis revealed the formation of single phase, well crystalline thin films with cubic fluorite structure. Crystallite size was found to be in the range of 10-15 nm. AFM showed formation of smooth films with morphological grain size 27 nm. Films were found to be highly resistive with room temperature resistivity of the order of 107 Ω cm. Activation energy was calculated and found to be 0.78 eV. The deposited film showed high oxygen ion conductivity of 5.94 × 10−3 S cm−1 at 350 °C. Thus, the deposited material shows a potential application in intermediate temperature solid oxide fuel cells (IT-SOFC) and might be useful for μ-SOFC and industrial catalyst applications. 相似文献
5.
6.
ZHAO Songqing ZHOU Yueliang WANG Shufang ZHAO Kun HAN Peng 《稀有金属(英文版)》2006,25(6):693-696
PolycrystaUine SnO2 thin films were deposited on sapphire substrates at 450℃ under different ambient oxygen pressures by pulsed laser deposition technique. The effect of ambient oxygen pressure on the structural, optical and electrical properties of SnO2 thin films was studied. X-my diffraction and Hall measurements show that increasing the ambient oxygen pressure can improve crystallization of the films and decrease resistivity of the films. A violet emission peak centered at 409 nm was observed from photoluminescence measurements for SnO2 films under deposition ambient oxygen pressure above 5 Pa, which is related to the improvement of crystalline of the films. 相似文献
7.
采用射频(RF)磁控溅射法在玻璃衬底上制备了SnO2-Al2O3 (SAO) 双金属元素薄膜. 通过扫描电镜(SEM)图像,X射线衍射(XRD)图谱,四探针测量,UV-IR及光致发光(PL)谱研究了衬底温度对薄膜表面形貌,晶体微结构,电学及光学特性的影响. 当衬底温度增加时,SAO薄膜的晶粒尺寸增大. SEM图像及XRD图谱所显示的均质表面结构及大晶粒尺寸表明薄膜具有良好的表面形貌和结晶度. 在400-800nm的可见光范围,薄膜的透射率可达~80%-90%, 计算得到薄膜的带隙约4.11-4.14eV, 表面电阻约7.0 -9.4 . 通过合理选择溅射温度, 薄膜的带隙可得到增宽, 表面电阻可被降低. 测量还发现所制备SAO薄膜的PL谱在UV及红光带发光. 这种多晶SAO薄膜可用于透明导电氧化物(TCO)薄膜, 太阳能电池窗, 传感器及光发射器. 相似文献
8.
Highly transparent, p-type conducting SnO2:Al films derived from thermal diffusion of a sandwich structure Al/SnO2/Al multilayer thin films deposited on quartz substrate have been prepared by direct current and radio-frequency magnetron sputtering using Al and SnO2 targets. The deposited films were annealed at various temperatures for different durations. The effect of thermal diffusing temperature and time on the structural, electrical and optical performances of SnO2:Al films has been studied. X-ray diffraction results show that all p-type conducting films possessed polycrystalline SnO2 with tetragonal rutile structure. Hall-effect results indicate that 450 °C for 4 h were the optimum annealing parameters for p-type SnO2:Al films, resulting in a relatively high hole concentration of 7.2 × 1018 cm?3 and a low resistivity of 0.81 Ω cm. The transmission of the p-type SnO2:Al films was above 80%. 相似文献
9.
N. LiW.L. Li L.D. WangS.Q. Zhang J.W. YeW.D. Fei 《Journal of Alloys and Compounds》2011,509(31):8028-8031
Lead-free K0.4Na0.6Nb1−xVxO3 thin films were prepared by chemical solution deposition method. The effects of V doping on the phase composition and electrical properties of the films were studied at room temperature. The results indicate that the films are composed of orthorhombic and tetragonal phases, and the phase composition is affected by V content. It is also found that the ferroelectric and dielectric properties are improved by V doping (2Prmax = 35.5 μC/cm, ?max = 1189). The enhanced electrical properties are attributed to the more T-phase content and better quality of K0.4Na0.6Nb1−xVxO3 (x = 0.015) film. 相似文献
10.
Gold–silver alloy nanoparticles with various Au concentrations in sputtered SiO2 thin films were synthesized by using RF reactive magnetron co-sputtering and then heat-treated in reducing Ar + H2 atmosphere at different temperatures. The UV–visible absorption spectra of the bimetallic systems confirmed the formation of alloy nanoparticles. The optical absorption of the Au–Ag alloy nanoparticles exhibited only one plasmon resonance absorption peak located at 450 nm between the absorption bands of pure Au and Ag nanoparticles at 400 and 520 nm, respectively, for the thin films annealed at 800 °C. The maximum absorption wavelength of the surface plasmon band showed a red shift with increasing Au content. XPS results indicated that the alloys were in metallic state, and they had a greater tendency to lose electrons as compared to their corresponding monometallic state. Moreover, the positive and negative shift of the Au(4f) core-level binding energies was observed for low and high Au concentration, respectively. Also a negative shift of the Ag(3d) binding energies was increased by increasing Au concentration. Diffusion of the particles toward the surface by increasing the temperature has also been illustrated by AFM images. Based on AFM observations, we have found that the particle size reduced from 35 to 20 nm by increasing the annealing temperature from 600 to 800 °C, while particle size increased by increasing Au concentration in films. In addition, lateral force microscopy (LFM) analysis showed that the alloy particles were uniformly distributed on the surface. 相似文献
11.
We report the stress relaxation behavior of arc-evaporated TiCxN1−x thin films during isothermal annealing between 350 and 900°C. Films with x=0, 0.15, and 0.45, each having an initial compressive intrinsic stress σint=−5.4 GPa, were deposited by varying the substrate bias Vs and the gas composition. Annealing above the deposition temperature leads to a steep decrease in the magnitude of σint to a saturation stress value, which is a function of the annealing temperature. The corresponding apparent activation energies for stress relaxation are Ea=2.4, 2.9, and 3.1 eV, for x=0, 0.15, and 0.45, respectively. TiC0.45N0.55 films with a lower initial stress σint=−3 GPa, obtained using a high substrate bias, show a higher activation energy Ea=4.2 eV. In all the films, stress relaxation is accompanied by a decrease in defect density indicated by the decreased width of X-ray diffraction peaks and decreased strain contrast in transmission electron micrographs. Correlation of these results with film hardness and microstructure measurements indicates that the stress relaxation is a result of point-defect annihilation taking place both during short-lived metal-ion surface collision cascades during deposition, and during post-deposition annealing by thermally activated processes. The difference in Ea for the films of the same composition deposited at different Vs suggests the existence of different types of point-defect configurations and recombination mechanisms. 相似文献
12.
13.