首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-ohmic and dielectric properties of Ca2Cu2Ti4O12 (CaCu3Ti4O12/CaTiO3 composite) ceramics prepared by a polymer pyrolysis method (PP-ceramic samples) are investigated. The PP-ceramics show a highly dense structure and improved non-ohmic and dielectric properties compared to the ceramics obtained by a solid state reaction method (SSR-ceramic samples). ?′ (tan δ) of the PP-ceramic samples is found to be higher (lower) than that of the SSR-ceramic samples. Interestingly, the PP-ceramic sintered at 1050 °C for 10 h exhibits the high ?′ of 2530 with weak frequency dependence below 1 MHz, the low tan δ less than 0.05 in the frequency range of 160 Hz-177 kHz, and the little temperature coefficient, i.e., |Δ?′| ≤ 15 % in the temperature range from −55 to 85 °C. These results indicate that the CaCu3Ti4O12/CaTiO3 composite system prepared by PP method is a promising high-?′ material for practical capacitor application.  相似文献   

2.
Mechanism of charge compensation on lanthanum, (La3+) substitution on Ca site in calcium copper titanate (CaCu3Ti4O12), and its effect on resulting electrical and dielectric properties has been studied in the present investigation. For this purpose samples were prepared according to two stoichiometries viz. LaxCa(1−3x/2)Cu3Ti4O12 (x ≤ 0.09) and LaxCa(1−x)Cu3Ti4O12 (x = 0.03) by solid state ceramic route. The former represents ionic compensation while the later is in accordance with electronic compensation. Nature of charge carriers is identified by measuring Seebeck coefficient which is found to be negative in the entire range of measurement. In order to understand the mechanism of conduction, ac conductivity is measured as a function of temperature and frequency. Space charge polarization is the dominant polarization mechanism phenomenon at low frequency and high temperature while orientation polarization dominates at low temperature and high frequency. Impedance analysis confirms the formation of internal barrier layers which is responsible for high dielectric constant in these samples.  相似文献   

3.
CaCu3Ti4O12 (stoichiometric) and Ca1.1Cu2.9Ti4O12 (non-stoichiometric) thin films have been prepared by the soft chemical method on Pt/Ti/SiO2/Si substrates, and their electrical and dielectric properties have been compared as a function of the annealing temperature. The crystalline structure and the surface morphology of the films were markedly affected by the annealing temperature and excess calcium. The films show frequency-independent dielectric properties at room temperature which is similar to those properties obtained in single-crystal or epitaxial thin films. The room temperature dielectric constant of the 570-nm-thick CCTO thin films annealed at 600 °C at 10 kHz was found to be 124. The best non-ohmic behavior (α = 12.6) presented by the film with excess calcium annealed at 500 °C. Resistive hysteresis on the I-V curves was observed which indicates these films can be used in resistance random access memory (ReRAM).  相似文献   

4.
Impedance analyses was performed on undoped and Nb-doped CaCu3Ti4O12 (CaCu3Ti4−xNbxO12+x/2; x = 0, 0.01, 0.03, 0.05, 0.1) to investigate their electrical properties. The pellet samples were prepared using the solid state reaction method. Silver electrode was deposited on both pellets’ surfaces for electrical measurement. The thermally etched samples showed tiny bumped domains within the grains. The existence of both domain and grain boundaries are believed to strongly influence the dielectric constant of CaCu3Ti4O12 (CCTO). Undoped CCTO showed two arcs of impedance complex plane while Nb-doped samples have three arcs. Each arc represents the constituent elements of the CCTO. The highest frequency arc is evidence that CCTO consists of conductive domains which measure about 1 Ω and are insulated by two types of barriers, i.e. domain boundary and grain boundary.  相似文献   

5.
Calcium copper titanate, CaCu3Ti4O12 (CCTO), thin film has been deposited by the soft chemical method on Pt/Ti/SiO2/Si (1 0 0) substrates at 700 °C for 2 h. The peaks were indexed as cubic phase belonging to the Im−3 space group. The film exhibited a duplex microstructure consisting of large grains of 130 nm in length and regions of fine grains (less than 80 nm). The CCTO film capacitor showed a dielectric loss of 0.031 and a dielectric permittivity of 1020 at 1 MHz. The J-V behavior is completely symmetrical, regardless of whether the conduction is limited by interfacial barriers or by bulk-like mechanisms. Based on impedance analyses, the equivalent circuit of CCTO film consisting of a resistor connected in series with two resistor-capacitor (RC) elements.  相似文献   

6.
In this work, the dielectric behaviour and capacitance-voltage (C-V) curves under an applied DC bias field of 1 wt% Nb-doped CaCu3Ti4O12 ceramics have been studied. The dielectric properties reveal the existence of grain boundaries of different electrical nature. A new model is proposed to simultaneously explain the presence of insulating and conducting grain boundaries. At low frequency, the capacity curve of the material exhibits a double metal oxide semiconductor (MOS) capacitor-like behaviour and as the frequency is increased, the curve suffers an inversion showing a ferroelectric-like response. This behaviour does not correspond to ferroelectric domain movement phenomena but seems associated to charge accumulation on grain boundary regions.  相似文献   

7.
The microwave dielectric properties of CaTiO3-added Mg2(Ti0.95Sn0.05)O4 ceramics prepared by the mixed oxide route have been investigated. The combination of spinel-structured Mg2(Ti0.95Sn0.05)O4 and perovskite-structured CaTiO3 forms a two-phase system (1 − x)Mg2(Ti0.95Sn0.05)O4-xCaTiO3, which was confirmed by the XRD patterns and the EDX analysis and it also leads to a zero τf. The microwave dielectric properties of the ceramics can be effectively controlled by varying the x value. For practical applications, a new microwave dielectric material 0.91Mg2(Ti0.95Sn0.05)O4-0.09CaTiO3 is suggested and it possesses a good combination of dielectric properties with an ?r of ∼18.01, a Q × f of ∼92,000 GHz, and a τf of ∼0 ppm/°C, which makes it is a very promising candidate material for high frequency applications.  相似文献   

8.
The crystal structure and the dielectric properties of (1 − x)La(Mg0.5Ti0.5)O3-xCa0.8Sm0.4/3TiO3 ceramics have been investigated. Ca0.8Sm0.4/3TiO3 was employed as a τf compensator and was added to La(Mg0.5Ti0.5)O3 to achieve a temperature-stable material. The formation of (1 − x)La(Mg0.5Ti0.5)O3-xCa0.8Sm0.4/3TiO3 solid solutions were confirmed by the XRD results and the measured lattice parameters for all compositions. The dielectric properties are strongly correlated to the sintering temperature and the compositional ratio of the specimens. Although the ?r of the specimen could be boosted by increasing the amount of Ca0.8Sm0.4/3TiO3, it would instead render a decrease in the Q × f. The τf value is strongly correlated to the compositions and can be controlled by the existing phases. A new microwave dielectric material 0.45La(Mg0.5Ti0.5)O3-0.55Ca0.8Sm0.4/3TiO3, possessing a fine combination of microwave dielectric properties with an ?r of 47.83, a Q × f of 26,500 GHz (at 6.2 GHz) and a τf of −1.7 ppm/°C, is proposed as a very promising candidate material for today's 3G applications.  相似文献   

9.
High dielectric CaCu3Ti4O12 (CCTO) ceramics have been successfully prepared by a novel basic co-precipitation (BCP) method. Compared with the conventional solid-state and/or soft chemistry methods, the BCP method has many advantages such as relatively lower sintering temperature, shorter sintering time and lower costs. The XRD patterns confirm the formation of CCTO crystal phase in the as-prepared samples. Influences of initial ingredients and sintering condition on phase composition, microstructure and dielectric property have been investigated through series of trials. The correlation between the process of the grain growth and dielectric properties of final products has been explored. The final products exhibit the dielectric constants higher than 10,000 and the dielectric losses lower than 0.15 at 1 KHz.  相似文献   

10.
The Ca1−xSrxCu3Ti4O12 (CSCTO) giant dielectric ceramics were prepared by conventional solid-state method. X-ray diffraction patterns revealed that a small amount of Sr2+ (x < 0.2) had no obvious effect on the phase structure of the CSCTO ceramics, while with increasing the Sr2+ content, a second phase of SrTiO3 appeared. Electrical properties of CSCTO ceramics greatly depended on the Sr2+ content. The Ca0.9Sr0.1Cu3Ti4O12 ceramics exhibited a higher permittivity (71,153) and lower dielectric loss (0.022) when measured at 1 kHz at room temperature. The ceramics also performed good temperature stability in the temperature range from −50 °C to 100 °C at 1 kHz. By impedance spectroscopy analysis, all compounds were found to be electrically heterogeneous, showing semiconducting grains and insulating grain boundaries. The grain resistance was 1.28 Ω and the grain boundary resistance was 1.31 × 105 Ω. All the results indicated that the Ca0.9Sr0.1Cu3Ti4O12 ceramics were very promising materials with higher permittivity for practical applications.  相似文献   

11.
The crystal structures, phase compositions and the microwave dielectric properties of the xLa(Mg1/2Ti1/2)O3-(1 − x)Ca0.8Sr0.2TiO3 composites prepared by the conventional solid state route have been investigated. The formation of solid solution is confirmed by the XRD patterns. Doping with B2O3 (0.5 wt.%) can effectively promote the densification and the dielectric properties of xNd(Mg1/2Ti1/2)O3-(1 − x)Ca0.6La0.8/3TiO3 ceramics. It is found that xNd(Mg1/2Ti1/2)O3-(1 − x)Ca0.6La0.8/3TiO3 ceramics can be sintered at 1375 °C, due to the liquid phase effect of B2O3 addition observed by Scanning Electronic Microscopy. At 1375 °C, 0.4Nd(Mg1/2Ti1/2)O3-0.6Ca0.6La0.8/3TiO3 ceramics with 1 wt.% B2O3 addition possesses a dielectric constant (?r) of 49, a Q × f value of 13,000 (at 8 GHz) and a temperature coefficients of resonant frequency (τf) of 1 ppm/°C. As the content of Nd(Mg1/2Ti1/2)O3 increases, the highest Q × f value of 20,000 GHz for x = 0.9 is achieved at the sintering temperature 1400 °C.  相似文献   

12.
The microwave dielectric properties and microstructures of (1 − x)La(Mg0.5Ti0.5)O3-x(Ca0.8Sr0.2)TiO3 ceramics, prepared by a mixed oxide route, have been investigated. The forming of solid solutions was confirmed by the XRD patterns and the measured lattice parameters for all compositions. A near zero τf was achieved for samples with x = 0.5, although the dielectric properties varied with sintering temperature. The Q × f value of 0.5La(Mg0.5Ti0.5)O3-0.5(Ca0.8Sr0.2)TiO3 increased up to 1475 °C, after which it decreased. The decrease in dielectric properties was coincident with the onset of rapid grain growth. The optimum combination of microwave dielectric properties was achieved at 1475 °C for samples where x = 0.5 with a dielectric constant ?r of 47.12, a Q × f value of 35,000 GHz (measured at 6.2 GHz) and a τf value of −4.7 ppm/°C.  相似文献   

13.
Pure and Pr6O11-doped CaCu3Ti4O12 (CCTO) ceramics were prepared by conventional solid-state reaction method. The compositions and structures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The influences of Pr-ion concentration on dielectric properties of CCTO were measured in the ranges of 60 Hz-3 MHz and 290-490 K. The third phase of Ca2CuO3 was observed from the XRD of CCTO ceramics. From SEM, the grain size was decreased obviously with high valence Pr-ion (mixing valence of Pr3+ and Pr4+) substituting Ca2+. The room temperature dielectric constant of Pr-doped CCTO ceramics, sintered at 1323 K, was an order of magnitude lower than the pure CCTO ceramics due to the grain size decreasing and Schottky potential increasing. The dielectric spectra of Pr-doped CCTO were flatter than that of pure CCTO. The loss tangent of Pr-doped CCTO ceramics was less than 0.20 in 2 × 102-105 Hz region below 440 K. The complex impedance spectra of pure and Pr-doped CCTOs were fitted by ZView. From low to high frequency, three semicircles were observed corresponding to three different conducting regions: electrode interface, grain boundary and grain. By fitting the resistors R and capacitors C, the activation energies of grain boundary and electrode contact were calculated. All doped CCTOs showed higher activation energies of grain boundary and electrode than those of pure CCTO ceramics, which were concordant with the decreasing of dielectric constant after Pr6O11 doping.  相似文献   

14.
The Li2ZnxCo1−xTi3O8 (x = 0.2-0.8) solid solution system has been synthesized by the conventional solid-state ceramic route and the effect of Zn substitution for Co on microwave dielectric properties of Li2CoTi3O8 ceramics has also been investigated. The microwave dielectric properties of these ceramics show a linear variation between the end members for all compositions. The optimized sintering temperatures of Li2ZnxCo1−xTi3O8 ceramics increase with increasing content of Zn. The specimen with x = 0.4 sintered at 1050 °C/2 h exhibits an excellent combination of microwave dielectric properties with ?r = 27.7, Qu × f = 57,100 GHz and τf = −1.0 ppm/°C.  相似文献   

15.
Solid solutions of (1 − x)La(Co1/2Ti1/2)O3-xLa(Mg1/2Ti1/2)O3 were used to prepare La(Mg1−xCox)1/2Ti1/2O3 using solid-state synthesis. X-ray diffraction patterns of the sintered samples revealed single phase formation. A maximum density of 6.01 g/cm3 was obtained for La(Mg1−xCox)1/2Ti1/2O3 (x = 1) ceramics sintered at 1375 °C for 4 h. The maximum values of the dielectric constant (?r = 29.13) and the quality factor (Q × f = 80,000 GHz) were obtained for La(Mg1−xCox)1/2Ti1/2O3 with 1 wt% ZnO additive sintered at 1375 °C for 4 h. The temperature coefficient of resonant frequency τf was −59 ppm/°C for x = 0.3.  相似文献   

16.
Ferroelectric indium tin oxide (ITO) on PbZr0.53Ti0.47O3 (PZT)/Pt structure, prepared by RF sputtering onto SiO2/Si substrates, is studied in order to investigate the effect of ITO as a top electrode in these systems. X-ray diffraction, scanning electron microscopy (SEM) and atomic force microscopy (AFM) experiments were performed to study the structure and the surface morphology of the samples. From X-ray diffraction, we observe that the ITO thin film grows with the (1 1 1) texture and the peaks attributed to PZT are all from the perovskite phase. The average roughness (RMS) of the PZT surface is found to be 1.650 nm from AFM experiment. The ferroelectric and dielectric properties were inferred from polarization hysteresis loops, capacitance and dielectric constant measurements. These properties have been compared to those of the widely studied Pt/PZT/Pt system prepared under the same conditions. The effect of ITO/PZT/Pt annealing has been studied. Annealing at 400 °C leads to 13% increase in the dielectric constant ?r.  相似文献   

17.
The phase evolution, crystal structure and dielectric properties of (1 − x)Nd(Zn0.5Ti0.5)O3 + xBi(Zn0.5Ti0.5)O3 compound ceramics (0 ≤ x ≤ 1.0, abbreviated as (1 − x)NZT-xBZT hereafter) were investigated. A pure perovskite phase was formed in the composition range of 0 ≤ x ≤ 0.05. The B-site Zn2+/Ti4+ 1:1 long range ordering (LRO) structure was detected by both XRD and Raman spectra in x ≤ 0.05 samples. However, this LRO structure became gradually degraded with an increase in x. The dielectric behaviors of the compound ceramic at various frequencies were investigated and correlated to its chemical composition and crystal structure. A gradually compensated τf value was obtained in (1 − x)NZT-xBZT microwave dielectrics at x = 0.03, which was mainly due to the dilution of dielectric constant in terms of Claussius-Mossotti differential equation.  相似文献   

18.
We present the structural, microstructural, dielectric and impedance behavior of Pb0.7Sr0.3[(Fe2/3Ce1/3)0.012Ti0.988]O3 (PSFCT) and Pb0.7Sr0.3[(Fe2/3La1/3)0.012Ti0.988]O3 (PSFLT) nanoparticles. These nanoparticles were prepared by a chemical synthesis route using polyvinyl alcohol as surfactant. The X-ray diffraction pattern shows polycrystalline nature with coexistence of tetragonal and cubic phase in both PSFCT and PSFLT nanoparticles. The average particle size has been measured using Scherer's relation. The average particle sizes also measured by TEM are 10 and 11 nm, and by SEM 9 and 12 nm, respectively, of PSFCT and PSFLT nanoparticles. By measuring the value of relative permittivity (?′) and loss (tan δ) at lower frequency, the dielectric properties show Maxwell-Wagner type interfacial polarization. However, due to nano size effect of PSFCT and PSFLT, dispersionless dielectric response has been observed up to higher frequency of 15 MHz. The frequency dependent real (Z′) and imaginary (Z″) parts of impedance confirmed the variation which was observed in dielectric properties. The values of resistance of grain boundaries, Rgb is higher than grains, Rg indicates that the effect of grain boundaries is dominant on electrical properties when the size of nanoparticles is quite small.  相似文献   

19.
Ceramics in the system La(Mg1−xZnx)1/2Ti1/2O3 with B2O3 additions (1 wt.%) have been investigated by the conventional solid-state route. The XRD patterns of the sintered samples (0.3 ≤ x ≤ 1.0) revealed single phase formation with a structure. The unit cell volume slightly increased with increasing Zn content (x). La(Mg1−xZnx)1/2Ti1/2O3 were found to form perovskite solid solutions in the whole compositional range. The maximum values of the dielectric constant and the quality factor multiples resonant frequency (Q × f) can be obtained when the La(Mg0.7Zn0.3)1/2Ti1/2O3 with 0.5 wt.% B2O3 additive were sintered at 1475 °C for 4 h. The temperature coefficient of resonant frequency τf (−63 ppm/°C) was measured for x = 0.7.  相似文献   

20.
Microwave dielectric properties and microstructures of (Mg0.95Co0.05)TiO3 ceramics prepared by a new sintering method (reaction-sintering method) were investigated. A pure phase of (Mg0.95Co0.05)TiO3 was obtained by the new method and excellent dielectric properties were observed due to uniformities of the microstructure and the phase. In contrast, the secondary phase (Mg0.95Co0.05)Ti2O5 was observed in samples prepared by conventional sintering method. In order to study the influence of secondary phase on the microwave dielectric properties quantitatively, the weight fraction of (Mg0.95Co0.05)Ti2O5 was calculated on the basis of Rietveld refinement. The pore-free?r values of specimens prepared by two different methods indicated that porosity plays an important role in the ?r values of (Mg0.95Co0.05)TiO3 ceramics. Specimens sintered by reaction-sintering method at 1350 °C for 4 h possess excellent dielectric properties with an ?r of 16.3, a Q × f value of 244,500 GHz, and a τf value of −53.5 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号