首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The results of an experimental and finite-element investigation on a single-ply triaxial woven fabric composite loaded in tension are presented. The fabric is made of graphite yarns oriented in the 0 degrees and plus/minus 60 degrees directions and a thermoset resin. It is used by EMS Technologies Canada Ltd. for the manufacturing of super-lightweight spaceborne antenna reflectors. Two types of tensile test specimens were evaluated, straight and dog-bone, as well as three methods for bonding the strain gauges to the specimen. The effects of the specimen shape and bonding methods were evaluated. A finite-element model was developed to predict the behavior of the specimen under tensile conditions. The measured data provide information on the elastic properties and ultimate strength of the composite when subjected to loads acting either along the axial yarns or perpendicular to them.  相似文献   

4.
The present study investigates the behavior of concrete specimens confined with woven roving glass fabrics under uniaxial compression. The fabric made up of 360G.S.M. woven roved E-glass is embedded in a polyester resin before application. Experimental investigations have been carried out on confined and unconfined concrete specimens of size 150 mm (diameter) X 300 mm (height) under a displacement controlled loading. The effect of number of layers on confinement has also been investigated. Load versus deflection plots have been obtained for all the specimens. Numerical studies have been performed on the confinement effect of the wrapped concrete specimens. A non-linear finite element analysis has been conducted by developing numerical models in a general purpose finite element commercial software ABAQUS. The results obtained by numerical study have been compared and validated with the corresponding experimental results. Parametric studies have been conducted to study the effect of confinement on the response of the specimens. The parameters affecting the confinement were found to be the grade of concrete and number of layers of the fabric. Further, mesh sensitivity analysis has also been carried out to find out the mesh dependency of the confined specimens and results have been presented.  相似文献   

5.
本文主要对2.5D机织复合材料冲击后的剩余拉伸强度进行研究。采用落锤法预制冲击损伤,并进行剩余拉伸试验。用了基于层合板理论的软化夹杂法对冲击后试样进行刚度衰减的模拟,用有限元软件根据点应力破坏准则计算得到剩余强度,并与剩余拉伸试验结果进行比较,验证了模型的有效性。为便于对比,对平面机织斜纹布铺设的层合板进行了同种计算和实验,得到了在相同冲击能量下2.5D机织复合材料剩余拉伸强度衰减比例小于层合材料的结论,证明2.5D机织复合材料由于Z方向经纱的存在因而具有良好的抗冲击性。  相似文献   

6.
The aim of this work is to study the influence of weave structure on the crack growth behavior of thick E-glass/polyester woven fabric composites laminates. Two different types of laminates were fabricated: (i) balanced: plain weave (taffetas T)/chopped strand mat weave (M) [T/M]6 and (ii) unbalanced: 4-hardness satin weave (S)/chopped strand mat weave [S/M]7. In order to accurately predict damage criticality in such structures, mixed mode fracture toughness data is required. So, the experiments were conducted using standards delamination tests under mixed mode loading and pure mode loading. These tests were carried out in mode II using End Load Split (ELS) tests and in mixed-mode I+II by Mixed Mode Flexure (MMF) tests under static conditions. The test methodology used for the experiments will be presented. The experimental results have been expressed in terms of total strain energy release rate and R-curves. The fracture toughness results show that the T/M interface is more resistant to delamination than the S/M interface.  相似文献   

7.
To clarify the evolution of damage for typical carbon woven fabric/epoxy laminates exposed to lightning strike, artificial lightning testing on carbon woven fabric/epoxy laminates were conducted, damage was assessed using visual inspection and damage peeling approaches. Relationships between damage size and action integral were also elucidated. Results showed that damage appearance of carbon woven fabric/epoxy laminate presents circular distribution, and center of the circle located at the lightning attachment point approximately, there exist no damage projected area dislocations for different layers, visual damage territory represents maximum damage scope; visible damage can be categorized into five modes: resin ablation, fiber fracture and sublimation, delamination, ablation scallops and block-shaped ply-lift; delamination damage due to resin pyrolysis and internal pressure exist obvious distinguish; project area of total damage is linear with action integral for the same type specimens, that of resin ablation damage is linear with action integral, but no correlation with specimen type, for all specimens, damage depth is linear with logarithm of action integral. The coupled thermal–electrical model constructed is capable to simulate the ablation damage for carbon woven fabric/epoxy laminates exposed to simulated lightning current through experimental verification.  相似文献   

8.
3D warp interlock fabrics have been used both in composite materials as fibrous reinforcement as well as in protective solutions against impact mainly due to their improved capacity to absorb energy by higher intra-ply resistance to delamination. However, depending on the type of architecture used, the binding warp yarns may provide different types of mechanical behaviour. By the same, the choice of the yarn raw material coupled with the suited 3D warp interlock architecture is still a challenge to solve due to the lack of knowledge on the optimized fabric parameters to be chosen. Thus, to fill this gap, we have designed, produced on same dobby loom and tested different types of 3D warp interlock architectures (O-T 4 3–4 Basket 3–3 and A-T 4 5–4 Twill 6) with different types of raw material (E-glass EC9 900 Tex, para-aramid 336 Tex and flax Tex 500 yarns). Thanks to these tests, it has been highlighted different mechanical behaviours of 3D warp interlock fabrics with the same weave pattern but with different types of yarns (E-glass, flax and para-aramid) both in the warp and weft directions. It has been also revealed that the warp shrinkage of warp yarns inside the woven structure has a major influence on the whole fabric behaviour.  相似文献   

9.
采用三种不同结构玄武岩织物(单向/平纹/2.5维),通过树脂传递模塑成型工艺(RTM)制备了玄武岩织物增强环氧树脂复合材料。通过拉伸和弯曲试验,研究了织物结构对复合材料力学性能的影响,探讨了不同织物结构玄武岩织物增强环氧树脂复合材料的损伤破坏机制。结果表明:织物结构形式对复合材料的力学性能有较大影响,单向玄武岩织物复合材料的拉伸性能最好,试样的拉伸断口相对齐平,分层现象不明显;2.5维玄武岩织物复合材料弯曲性能最好,且纬向弯曲性能优于经向。2.5维织物增强复合材料的结构整体性较好,受到拉伸和弯曲载荷不会产生分层破坏。根据扫描电子显微镜(SEM)断面分析可以判定,玄武岩织物/环氧树脂复合材料拉伸和弯曲加载过程中的损伤类型主要为织物中纤维的断裂及纤维-树脂的界面脱粘。  相似文献   

10.
以碳纤维为原料,设计织造碳纤维体积含量约50%的浅交弯联和深交联两种典型的2.5维(2.5D)机织物,优选基体材料组分和配方,采用溶液浸渍、真空辅助相结合的成型工艺,制备出新型2.5D碳纤维机织物酚醛树脂基摩擦材料。测试了预制体的密度、摩擦材料的孔隙率和密度;研究了摩擦材料弯曲、剪切性能,并分析其细观形态及破坏机理。结果表明:浅交弯联碳布密度为0.79g/cm3,深交联碳布密度为0.84g/cm3;对应的复合材料密度分别为1.44和1.37g/cm3。相同碳纤维体积含量的深交联摩擦材料的孔隙率略大于浅交弯联。在纤维体积含量相同的情况下,相较于浅交弯联摩擦材料,深交联结构具有较大的剪切强度和抗弯强度;而在弯曲载荷作用下,浅交弯联摩擦材料表现为缓慢破坏,具有较好的稳定性。  相似文献   

11.
Nonlinear stress–strain behavior in woven glass/epoxy laminates under off-axis tension has been investigated experimentally. The validity of an orthotropic plasticity model of such behavior, with three parameters, is discussed. The parameters have been determined from the experimental results. An attempt is also made to describe the nonlinear behavior of the woven composite as a cross-ply laminate using assumed unidirectional composite properties. The nonlinear behavior of the unidirectional laminate is assumed to be described by the one-parameter plasticity model. It is shown that there is a possibility that the one-parameter plasticity model can be used to predict the nonlinear behavior of woven composites.  相似文献   

12.
燕德利  周光明  王佳佳 《材料导报》2012,26(12):137-140
建立了一种起圈织物增强层合板的平拉单胞模型,通过有限元计算预测其平拉强度。研究起圈织物增强层合板的复合成型工艺,制作了符合要求的实验件。对该种材料的短梁剪切、平拉、双面剪切性能进行了实验研究,获得了该材料主要层间力学性能参数,并与传统复合材料层合板的力学性能进行了对比,得出了一些有益的结论,为该材料的性能分析和结构优化奠定了基础。  相似文献   

13.
A polymer fabric reinforced composite is a high performance material, which combines strength of the fibres with the flexibility and ductility of the matrix. For a better drapeability, the tows of fibres are interleaved, resulting the woven fabric, used as reinforcement. The complex geometric shape of the fabric is of paramount importance in establishing the deformability of the textile reinforced composite laminates. In this paper, an approach based on Classical Lamination Theory (CLT), combined with Finite Element Methods (FEM), using Failure Analysis and Internal Load Redistribution, is utilised, in order to compare the behaviour of the material under specific loads. The main goal is to analyse the deformability of certain types of textile reinforced composite laminates, using carbon fibre satin as reinforcement and epoxy resin as matrix. This is accomplished by studying the variation of the in-plane strains, given the fluctuation of several geometric parameters, namely the width of the reinforcing tow, the gap between two consecutive tows, the angle of laminae in a multi-layered configuration and the tows fibre volume fraction.  相似文献   

14.
We characterize the combined Mode I and Mode III delamination fracture behavior of woven glass fiber reinforced polymer (GFRP) composite laminates at cryogenic temperatures. The eight-point bending plate (8PBP) tests were conducted at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K) using a new test fixture. A three-dimensional finite element analysis was also performed to calculate the energy release rate distribution along the delamination front, and the delamination fracture toughnesses were evaluated for various mixed-mode I/III ratios. Furthermore, the microscopic examinations of the fracture surfaces were carried out with scanning electron microscopy (SEM), and the mixed-mode I/III delamination fracture mechanisms in the woven GFRP laminates at cryogenic temperatures were assessed. The fracture properties were then correlated with the observed characteristics.  相似文献   

15.
This paper deals with mode III delamination properties of glass fiber reinforced polymer woven laminates at room temperature (293 K), liquid nitrogen temperature (77 K), gas helium temperature (20 K), and liquid helium temperature (4 K). In order to evaluate these properties, the Split Cantilever Beam (SCB) fracture test is performed. The load is applied to a test specimen through a set of identical grips in order to reduce (in some degree) the mode II loading at the free edges. A three-dimensional finite element analysis is used to study the stress and strain state of the specimens and to interpret the experimental measurements. The strain energy release rate is calculated by using the virtual crack closure technique. It is found that the strain energy release rate is dominated by the mode III component. A non-uniform distribution of the strain energy release rate along the delamination front is obtained with mode III component having maximum at the center of the delamination front, while mode II component increases towards the free edges. The strain energy release rate is also determined using the crack closure technique. A finite element analysis is also carried out to calculate the stress intensity factors for the SCB specimens. The fracture surfaces are examined by scanning electron microscopy to identify the fracture mechanisms. The most important conclusion from the present study is that at temperature lowering from 293 to 20 K the mode III fracture toughness increases, further cooling to 4 K produces a toughness decrease.  相似文献   

16.
The general context of the development of out-of-autoclave processes in the aeronautics industry raises the question of the possible links between these new processes and impact behaviour. In this study, a Taguchi table was used in a design of experiment approach to establish possible links. The study focused on the liquid resin infusion process applied to laminates made with stitched or unstitched quadri-axial carbon Non-Crimp Fabric (NCF). On the basis of previous studies and an analysis of the literature, five process parameters were selected (stitching, curing temperature, preform position, number of highly porous media, vacuum level). The impact energy was set at 35?J in order to obtain enough residual dent depth. The parameters analysed during and after impact were: maximum displacement of the impactor, energy absorbed, permanent indentation depth, and delaminated surface. Then, compression after impact tests were performed and the corresponding average stress was measured. The interactions found by statistical analysis show a very high sensitivity to stitching, which was, of course, expected. A very significant influence of curing temperature and a significant influence of preform position were also found on the permanent indentation depth and a physical explanation is provided. Globally, it was demonstrated that the resin infusion process itself did not influence the impact behaviour.  相似文献   

17.
The effect of the geometry of woven fabrics on the bond between monofilament polyethylene yarns and cement matrix was studied in the present work. The fabrics were all plain weave, with varied fills density: 5, 7, or 10 fills per cm; the warps’ density was kept constant at 22 warps per cm. The interfacial bond was evaluated by pullout tests. To characterize the influence of the fabric’s geometry on bond performance, the influence of different parameters of the fabric’s geometry that may affect bond were separated: (1) pullout of a single crimped yarn untied from the fabric to characterize the influence of the shape of the individual crimped yarn; (2) pullout of a single yarn from free fabric (not embedded in the cement matrix); and (3) pullout of a yarn from a fabric embedded in the cement matrix. Straight yarns were also tested for comparison. It was found that the woven fabric provided a considerably better bond to the cementitious matrix than the bond of a single straight yarn. The crimped geometry of the yarn in the fabric was found to have a significant influence on increasing the bond between the woven fabric and the cementitious matrix.  相似文献   

18.
The possibility of galvanic corrosion typically prohibits the pairing of carbon fiber and aluminum in a fiber metal laminate (FML). In this study, the authors describe a new type of FML comprised of alternating layers of bulk metallic glass (BMG) and carbon fiber reinforced polymer (CFRP) composite. The authors compare the galvanic coupling and mechanical behavior of an Al‐based FML and a BMG‐CFRP FML. Results show that when paired with CFRPs, BMG exhibits far less galvanic corrosion than aluminum paired with CFRP. In fact, the corrosion between BMG and CFRP is similar in magnitude to the corrosion between aluminum and glass fiber, the two constituent materials of GLARE, the most widely used FML. While interlaminar shear strength and flexural strength are similar for both FML types, the tensile strength and modulus of BMG‐based FMLs are greater than those of Al‐based FMLs.
  相似文献   

19.
对复合材料层压板进行不同能量的落锤冲击试验,根据凹坑深度将冲击损伤分为无损伤、目视不可检、目视可检与穿透损伤4个等级。通过C-扫描检测、热揭层、损伤截面观察等方法,研究了不同等级损伤的失效特征、失效模式与失效过程。结果表明,不同等级损伤的失效模式不同,目视不可检损伤主要为分层失效,目视可检损伤主要为分层与基体开裂,穿透损伤主要为纤维断裂。损伤达到穿透前后的失效过程也存在差异。  相似文献   

20.
针对纤维增强树脂基单向复合材料横向刚强度低的问题,通过碳纳米管(CNTs)在单向复合材料横向方位取向控制技术研究,建立了一种CNTs在树脂基复合材料中电场取向装置,制备了取向CNTs/环氧树脂(EP)复合材料及取向CNTs/玻璃纤维(GF)增强环氧树脂基单向层合板,并对不同电场强度、CNTs含量对其力学性能的影响进行了试验分析。结果表明,施加300V/cm的取向电场时,添加0.2wt%多壁碳纳米管(MWNTs)/EP储能模量较未添加MWNTs时提高了68.42%,较随机方位分布MWNTs/EP提高了1.36%;取向MWNTs/GF增强单向层合板横向弯曲强度及模量比未添加MWNTs时分别提高了72.2%和92.1%,比随机方位分布MWNTs增强时分别提高了58.29%和61.43%;施加439V/cm的取向电场时,添加0.2wt%取向MWNTs/GF增强单向层合板横向弯曲强度及模量比未添加MWNTs时分别提高了64.7%和63%,比随机方位分布MWNTs增强时分别提高了51.42%和36.90%,取向CNTs/GF增强树脂基单向层合板横向刚强度均得到了大幅提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号