首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium yttrium tetrametagermanates Y2CaGe4O12 doped with Er3+ and Er3+/Yb3+ reveal upconversion emission in visible spectral range under near-infrared excitation, λex = 980 nm. For the solid solution ErxY2−xCaGe4O12 concentration dependencies for the green and red lines of the visible emission around 526 nm (2H11/2 → 4I15/2), 545 nm (4S3/2 → 4I15/2) and 670 nm (4F9/2 → 4I15/2) show the optimal value for the sample x = 0.2. The power dependence of the visible luminescence measured at room temperature in the low-power limit indicates two-photon upconversion process. Direct intensification of the upconversion emission signals has been achieved by ytterbium sensitizing. The other upconversion excitation mechanism in Y2CaGe4O12:Er3+ is discussed for an 808 nm incident laser irradiation. A scheme of excitation and emission routes involving ground/excited state absorption, energy transfer upconversion, nonradiative multiphonon relaxation processes in trivalent lanthanide ions in Y2CaGe4O12:Er3+ and Y2CaGe4O12:Er3+, Yb3+ has been proposed. Conditions for visible emission occurrence under quasi-resonance λex = 1064 nm excitation depending on pump power values are considered. In the low-power regime only near-infrared emission caused by the transition 4I13/2 → 4I15/2 in erbium ions has been detected.  相似文献   

2.
The influences of Bi3+ doping on the optical properties of Er3+:Y2O3 are investigated under UV and IR excitations. The emission intensity of Er3+ is remarkably enhanced by the introduction of Bi3+ under both two excitations. The emission enhancement under UV excitation originates from the energy transfer from Bi3+ to Er3+, while under IR excitation it can be attributed to the modification of the local crystal field around the Er3+.  相似文献   

3.
Er3+ doped CaF2 nanoparticles were synthesized by a chemical co-precipitation method. Effect of the dopant concentrations on the structure and optical properties of the CaF2 nanoparticles was investigated. The X-ray powder diffraction and transmission electron microscopy analysis was used to characterize the structure and morphology of the nanoparticles. The nanoparticles with different dopant concentration exhibited a sphere-like morphology with diameters of about 8-36 nm. The incorporation of Er3+ ions into CaF2 resulted in the decrease in grain size and deterioration of crystallinity, but enlarged the lattice constants of CaF2. Additional annealing treatment at 400 °C to the prepared CaF2 removed the NO3 and OH groups adsorbed on the particles’ surfaces, and improved the optical properties of the nanoparticles. The fluorescence intensity, with a maximum at approximately 0.4 mol%, decreased with the increase in doping concentration because of concentration quenching.  相似文献   

4.
Tm3+/Er3+/Yb3+ triply doped Y2O3 transparent ceramics were fabricated by solid state reaction and characterized from the point of view of white light upconversion luminescence. All the samples exhibited high transparency not only in near-infrared band but also in visible region. Strong red (Er3+: 4F9/2 → 4I15/2), green (Er3+: 2H11/2, 4S3/2 → 4I15/2) and blue (Tm3+: 1G4 → 3H6) upconversion emissions have been observed under 980 nm excitation at room temperature. By varying the concentration of Er3+ ion, various colors of upconversion luminescence (pure blue, bluish green, pure green and yellowish green), including white light with CIE-X = 0.295 and CIE-Y = 0.312, can be easily achieved.  相似文献   

5.
The Er3+:LiGd(MoO4)2 crystal with Ø21 × 33 mm3 was grown by the Czochralski technique, and the absorption spectra, the fluorescence spectra and the fluorescence decay curves were measured at room temperature. Some spectroscopic parameters, such as the parameters of oscillator strengths, the spontaneous transition probabilities, the fluorescence branching ratios, the radiative lifetimes and the emission cross-sections were estimated based on Judd-Ofelt theory and Füchtbauer-Ladenburg method. The infrared emission at 1450-1650 nm, due to 4I13/2 → 4I15/2 transition and the visible emission at 520-569 nm corresponding to 2H11/2,4S3/2 → 4I15/2 transition were observed in Er3+:LiGd(MoO4)2 crystals under 979 nm excitation at room temperature. The emission cross-sections are 4.37 × 10−20 cm2 at 553 nm and 0.584 × 10−20 cm2 at 1561 nm for π-polarization, and the following measured lifetimes are 4.57 ms and 10.74 μs. The upconversion emissions were attributed to energy transfer between Er3+ ions and the excited state absorption.  相似文献   

6.
Dysprosium-activated Sr3RE2(BO3)4 (RE = Y, La, Gd) phosphors were synthesized by a high temperature solid-state reaction method. The phase uniformity of the phosphors was characterized by X-ray powder diffraction (XRD) and the luminescence characteristics were investigated. The excitation spectra at 575 nm emission show strong spectral bands in the region of 300-500 nm. The emission spectra of the phosphors with 365 nm excitation show three bands centered at 484 nm, 575 nm and 680 nm, which originate from the transitions of 4F9/2 → 6H15/2, 4F9/2 → 6H13/2 and 4F9/2 → 6H11/2 of Dy3+, respectively. The effect of Dy3+ concentration on the emission intensity of the phosphors was investigated. The fluorescence decay curves for 4F9/2 → 6H13/2 excited at 365 nm and monitored at λem of 575 nm were measured. The decay times decreased slowly with increasing Dy3+ doping concentration due to a trap capturing to resonance fluorescence transfer of the activated ions and due to the exchange interactions between activated ion pairs. In order to determine the type of interaction between activated ions, the concentration dependence curves (lg(I/x) versus lg x) of Sr3RE2(BO3)4:Dy3+ (RE = Y, La, Gd) were plotted. The concentration quenching mechanism of the 4F9/2 → 6H13/2 (575 nm) transition of Dy3+ is the d-d interaction. All results indicate these phosphors are promising white-color luminescent materials.  相似文献   

7.
In this work, bismuth sodium titanate (Bi0.5Na0.5)TiO3 (BNT) and praseodymium (Pr)-doped BNT were successfully produced using the soft combustion technique. The effects of Pr doping on stoichiometry, microstructure, density and dielectric properties were studied. Pure Pr-doped BNT was obtained in all samples containing 5, 10 and 20 mol% Pr after calcination at 800 °C for 3 h. The produced powders were then pressed into pellets and sintered at 1100 °C for 3 h. The very similar ionic radii of Pr3+ with Bi3+ and Na+ made it possible to substitute both Bi and Na. The crystallite size and grain size decreased with increasing Pr amount because Pr acted as grain growth inhibitor, both for calcined powders and for sintered pellets. Maximum density was obtained in 5 mol% Pr-doped BNT, beyond which density decreased. The maximum dielectric constant of 756 was obtained in 5 mol% Pr-doped BNT and decreased at higher levels of Pr doping. Pr doped into BNT also caused a decrease in dielectric loss.  相似文献   

8.
Y2O3:Er3+ ultrafine phosphors with a varying Yb3+ ion concentration were prepared by a urea homogeneous precipitation method. The results of XRD show that all the samples are of a pure cubic structure and the average crystallite sizes can be calculated as 45, 34, and 28 nm for Y2O3:Er3+ ultrafine phosphors with Yb3+ ion concentrations of 0, 10%, and 20%, respectively. The lattice constant and cell volume of the ultrafine phosphors decrease with enhancing Yb3+ ion concentration. The upconversion luminescence spectra of all the samples were studied under 980 nm laser excitation. The strong green and red upconversion emission were observed, and attributed to the 2H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+, respectively. The intensity of red emission increases with increasing Yb3+ ion concentration. The effect of Yb3+ ion concentration on the structures and upconversion luminescence mechanism were discussed.  相似文献   

9.
Optical emission spectroscopy (OES) is a non-intrusive diagnostic technique, widely used to study different kinds of plasmas. In the present work, a locally resolved OES technique was used to obtain near cathode (substrate) emission spectra for N2-H2 glow discharges. It was observed that, along with N2+ and N2 lines, the characteristic atomic nitrogen lines at 742.3 nm (3p 4S03/2 → 3s 4P1/2), 744.2 nm (3p 4S03/2 → 3s 4P3/2), 746.8 nm (3p 4S03/2 → 3s 4P5/2) and Hα (656.3 nm) were the main emissions coming from the sheath region that shrouded the cathode. A qualitative analysis of the spectral lines near the cathode has been done in order to understand the mechanism of plasma nitriding and the role played by the hydrogen in the nitriding process. The decrease in local intensity of these atomic lines with hydrogen composition suggests that the effect of hydrogen is to enhance the sticking/adsorption of N on the cathode surface.  相似文献   

10.
Dy3+-activated β/α′-Sr2SiO4 phosphors were successfully prepared by solid-state reaction method with ammonium chloride (NH4Cl) as the flux. The influences of calcination temperatures, amounts of NH4Cl and the concentrations of Dy3+ on phase composition, morphology and the photoluminescent properties of as-prepared powders were investigated in detail. The β and α′ phases of Sr2SiO4 were obtained with 1 wt% and 2-5 wt% NH4Cl, respectively, as the sintered condition was at 1000 °C for 4 h. With increasing the amount of NH4Cl, the morphology of phosphors changed from needlelike to regular polyhedron shape and the colors of the Sr2SiO4:Dy3+ phosphors changed from blue-green to white. The luminescence intensity of 4F9/2 → 6H15/2 transition was slightly higher than that of 4F9/2 → 6H13/2L = 2, ΔJ = 2) transition owing to the low-symmetry around Dy3+ ions. The optimum concentration of Dy3+ was 2.0 mol% and the concentration quenching were caused by the d-d interaction and a cross relaxation. The yellow-to-blue intensity ratio (Y/B) of Dy3+ emission did not to change with varying the Dy3+ concentration using Li+ ions for charge compensation. These indicate that this phosphor can be used as a potential candidate for the phosphor-converted white LEDs with a UV chip.  相似文献   

11.
Monodispersed ultrafine Bi2S3 nanocrystals of ∼3 nm were synthesized via a facile and mild method, in which thioacetamide and bismuth oleate complex were used as the sulfur and bismuth precursors, respectively. The obtained Bi2S3 nanocrystals possessed a high surface area of 305 m2 g−1. The nanostructures of Bi2S3 nanocrystals were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and selective area electron diffraction (SAED) techniques. The optical property of the Bi2S3 nanocrystals was studied by photoluminescence spectroscopy. A remarkable blue shift and a band gap of ∼1.5 eV were observed. The shape of the Bi2S3 nanocrystals could be tuned by adjusting the initial Bi/S molar ratio and reaction temperature, respectively. A possible burst nucleation mechanism for this monodispersed ultrafine Bi2S3 nanocrystals was proposed.  相似文献   

12.
Nano-sized Y2O3:Eu3+ hollow spheres were fabricated via a facile strategy including preparation of the hollow precursor and a later calcination. Moreover, the growth process of these hollow spheres was monitored by time-dependent experiments and their luminescence properties were also intensively studied. The products exhibit strong red emitting at 613 nm under ultraviolet excitation and control experiments were carried out to optimize the synthetic conditions. It was found 850 °C calcination with 9 mol% doping level could give out the best photoluminescence performance. Moreover, a possible mechanism for the enhanced PL performance was also proposed based on the FT-IR investigation.  相似文献   

13.
Nb5+:Eu3+-codoped TiO2 nanopowders for chemical composition adjustment have been synthesized via Ar/O2 radio-frequency thermal plasma. X-ray diffraction (XRD) results reveal that all the resultant powders exhibited mixture polymorphs of anatase (mean size: ∼45 nm) as the major phase and rutile (mean size: ∼71 nm). Rutile formation was promoted by the Eu3+ doping but suppressed by the Nb5+ addition. Combined observation using FE-SEM and TEM indicates that all the plasma-synthesized powders had a majority of facet-shaped particles (several nanometers) and a small proportion of nearly spherical crystals (∼150 nm). For the defect-mediated photoluminescence (PL) emission through the energy transfer from the TiO2 host to the Eu3+ activator, the PL intensity originating from the 5D0 → 7F2 electronic transition weakened but that from the 5D0 → 7F1 electronic transition strengthened with increasing Nb5+ content. This may be a result of the decrease in the oxygen vacancy defects in the TiO2 host lattice, as revealed by the joint means of UV-vis absorption spectra and excitation and emission spectra.  相似文献   

14.
Polycrystalline indium doped CdS0.2Se0.8 thin films with varying concentrations of indium have been prepared by spray pyrolysis at 300 °C. The as deposited films have been characterized by XRD, AFM, EDAX, optical and electrical resistivity measurement techniques. The XRD patterns show that the films are polycrystalline with hexagonal crystal structure irrespective of indium doping concentration. AFM studies reveal that the RMS surface roughness of film decreases from 34.68 to 17.76 with increase in indium doping concentration up to 0.15 mol% in CdS0.2Se0.8 thin films and further it increases for higher indium doping concentrations. Traces of indium in CdS0.2Se0.8 thin films have been observed from EDAX studies. The optical band gap energy of CdS0.2Se0.8 thin film is found to decrease from 1.91 eV to 1.67 eV with indium doping up to 0.15 mol% and increase after 0.15 mol%. The electrical resistivity measurement shows that the films are semiconducting with minimum resistivity of 3.71 × 104 Ω cm observed at 0.15 mol% indium doping. Thermoelectric power measurements show that films exhibit n-type conductivity.  相似文献   

15.
The upconversion (UC) luminescence in sol-gel synthesized Li+, Zn2+, or Li+-Zn2+ codoped Y2O3:Er3+ nanocrystals were investigated under the excitation of a 970 nm diode laser. Compared to undoped Y2O3:Er3+ samples, proper doping of Li+-Zn2+ leads to an drastic increase of the UC luminescence centered at 560 nm by a factor of 28. The UC luminescence enhancement is a result of the increased lifetime of the intermediate state 4I11/2 (Er). The intensity ratio of the green over red emissions (green/red) is also affected by the codoping of Zn2+, Li+ and Li+-Zn2+ ions. Our results demonstrated that the Li+-Zn2+ codoping in Y2O3:Er3+ phosphors produced remarkable enhancement of the UC luminescence and green/red ratio, making this nanocrystal a promising candidate for photonic and biological applications.  相似文献   

16.
BaYF5:Yb3+, Er3+ (BYF) upconversion (UC) luminescence nanoparticles have been prepared using co-precipitation and hydrothermal techniques, respectively. Two different fluoride sources were used to synthesize BYF by the hydrothermal method, and the sizes of the as-prepared spherical particles were about 30 nm (NH4BF4 as a fluoride source) and 100 nm (NH4HF2 as a fluoride source), respectively. While the nanoparticles prepared by the co-precipitation method are irregular, many clusters and agglomerates can be seen. The UC fluorescence has been realized in all the as-prepared BYF samples upon 980 nm excitation. It is found that their luminescence spectra depend strongly upon the preparation method. Factors affecting the upconversion fluorescent intensity have been also studied. The UC emission transitions for 4F9/2-4I15/2 (red), 2H11/2-4I15/2 (green) and 4S3/2-4I15/2 (green) in the Yb3+/Er3+ codoped BYF nanoparticles depending on pumping power have also been discussed.  相似文献   

17.
The present work reports the effect of concentration on photoluminescence properties of Sm3+ ions doped lead tungstate tellurite (LTTSm) glasses by using the absorption, emission and decay measurements. The Judd-Ofelt theory has been used to evaluate the three Judd-Ofelt intensity parameters (Ω2,4,6) and calculated oscillator strengths (fc). LTTSm glasses exhibited intense reddish-orange emission when excited with 477 nm wavelength. Concentration quenching has been noticed beyond 1.0 mol% of Sm3+ ion concentration. The decay curves of 4G5/2 level exhibited single exponential behavior for all the concentrations and the measured lifetimes are found to depend strongly on Sm3+ concentration. From the emission characteristic parameters of 4G5/2 level, it is concluded that the LTTSm glasses could be useful for photonic devices like visible lasers, fluorescent display devices and optical amplifiers.  相似文献   

18.
A series of Gd1−xCaxPO4·nH2O nanorods were prepared using a simple hydrothermal reaction which was optimized by tuning the pH values of the precursor. The resulted nanorods were characterized by X-ray diffraction, transmission electron microscopy, Fourier transformation infrared spectroscopy, and alternative current impedance technique. It is demonstrated that all Gd1−xCaxPO4·nH2O nanorods crystallized in a pure hexagonal structure. For x = 0, the particle dimension decreased with increasing the pH value. For x > 0, the solid solution limit of Ca2+ in GdPO4·nH2O nanorods was about 3 mol%, below which the lattice volume increased with increasing the doping level of Ca2+. The conductivities of nanorods were highly dependent on both the particle size and Ca2+ concentration, as indicated by the increased conductivity as particle size reduces or Ca2+ doping level increases. These observations were understood in terms of the dehydration and the introduction of HPO42− defects by Ca2+ doping.  相似文献   

19.
Eu2+-doped Sr3La(PO4)3 phosphors were synthesized by solid-state reaction method. Their luminescent properties were investigated. The phosphor could be excited by ultraviolet light effectively. The emission spectra exhibit two emission peaks located at 418 nm and 500 nm, respectively. These two peaks originated from two different luminescent centers, respectively. One is nine-coordinated Eu(I) center, other is six-coordinated Eu(II) center. It was found that the doping concentration of Eu2+ ions affected the shape of emission spectra. As the doping concentration increasing, Eu2+ ions are more likely to form Eu(I) luminescent centers and emit purple light.  相似文献   

20.
SiO2:Pr3+-Ce3+ phosphor powders were successfully prepared using a sol-gel process. The concentration of Pr3+ was fixed at 0.2 mol% while that of Ce3+ was varied in the range of 0.2-2 mol%. High resolution transmission electron microscopy (HRTEM) clearly showed nanoclusters of Pr and Ce present in the amorphous SiO2 matrix, field emission scanning electron microscopy (FE-SEM) indicated that SiO2 clustered nanoparticles from 20 to 120 nm were obtained. Si-O-Si asymmetric stretching was measured with Fourier transform-IR (FT-IR) spectroscopy and it was also realized that this band increased with incorporation of the activator ions into the SiO2 matrix. The broad blue emission from the Ce3+ ions attributed to the 5d1-4f1 transition was observed from the SiO2:0.2 mol% Pr3+-1 mol% Ce3+ phosphor. This emission was slightly enhanced compared to that of the singly doped SiO2:1 mol%Ce3+ phosphor. Further investigations were conducted where the CL intensity was measured at different beam voltages and currents from 1 to 5 kV and 8.5 to 30 μA, respectively, in order to study their effects on the CL intensity of SiO2:0.2 mol% Pr3+-1 mol% Ce3+. The electron-beam dissociated the SiO2 and as a result an oxygen-deficient surface dead or non-luminescent layer of SiOx, where x < 2 on the surface, was formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号