首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The AC conductivity, σac(ω) for bulk magnesium phthalocyanine (MgPc) in the form of compressed pellet in the frequency range of 1–500 kHz and in a temperature range of 303–443 K with evaporated ohmic Au electrodes have been investigated. The frequency dependence of the impedance spectra plotted in the complex plane shows semicircles. The Cole–Cole diagrams have been used to determine the DC conductivity. The AC conductivity, σac(ω), is found to vary as ωs in the frequency range of 1–500 kHz. At high range of frequency, s < 1 and it decreases with increasing the temperature. The variation of s with temperature suggests that the AC conduction is due to the correlated barrier hopping (CBH). The dielectric constant, ′, and dielectric loss, ″, for bulk MgPc were decreased with increasing frequency and increased with increasing temperature.  相似文献   

2.
Dielectric properties of Cu substituted Ni-Zn-Mg ferrite samples having the general formula Ni0.5−xCuxZn0.3Mg0.2Fe2O4 (where x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) synthesized by Pramanik method are reported. The single phase formation of the ferrites was confirmed by XRD technique. The lattice parameter is found to increase with increase in Cu content. Average grain size, obtained from SEM micrographs, is found to increase with increase in Cu content. Dielectric parameters were measured as a function of frequency at room temperature as well as at higher temperatures. The variation in dielectric constant (?′) with temperature at four different fixed frequencies viz. 1 kHz, 10 kHz, 100 kHz, and 1 MHz was also studied. The room temperature dielectric constant (?′) and dielectric loss (tan δ) are found to decrease with increase in frequency. The ac conductivity (σac) is found to increase with increase in the frequency.  相似文献   

3.
Colossal magnetoresistive manganite La0.7Sr0.3MnO3 (LSMO) films were prepared by pulsed laser deposition on three different single crystal substrates using different deposition parameters. Characterizations of their surface morphologies, structural, magnetic and magneto-transport properties show that films on MgO single crystal substrates contain higher amount of structural defects compared to those on SrTiO3 (STO) and NdGaO3 (NGO) substrates. Low deposition rate and thicker films give rise to polycrystallinity and grain boundaries. The films on MgO substrate showed a broad paramagnetic (PM) to ferromagnetic (FM) transition accompanied with metal-insulator transition (MIT) much below their Curie temperature (TC) indicating growth of strained structures due to large lattice mismatch (9%) between the substrate and the film. The deposited films on STO and NGO show least effect of substrate induced strain exhibiting sharper PM-FM transition and metallic behavior below TC. The magnetoresistance (MR) measured with 300 mT field clearly shows two contributions, one due to grain boundary tunneling and the other due to colossal MR effect. The highest low field MR effect of 17% was achieved for the film on MgO with the highest thickness and surface roughness indicating the presence of grain boundary related defects. Also a high dielectric constant was observed for the same film at room temperature up to 100 kHz frequency. Coexistence of defect induced large low-field MR and abnormally high dielectric constant can give rise to different exciting applications.  相似文献   

4.
The X-ray diffraction Rietveld refinement of Ba[(Fe1−xCox)1/2Nb1/2]O3 with 0 ≤ X ≤ 1 shows cubic structure formation with space group Pm3m. No distinct tilting of oxygen octahedron is observed. The dielectric measurement of such a cubic system exhibited giant values (?′ > 104) in the temperature range of 298-483 K and frequency range of 102-105 Hz. An analysis of the permittivity, electric modulus, and electrical conductivity properties in these systems confirmed the presence of oxygen vacancies induced dipolar relaxation. Our investigations show that the observed extremely high dielectric constant values are predominantly the result of oxygen vacancies induced dipoles produced at the grain boundaries. Additional significant intrinsic contributions to the permittivity comes from the directly doped electrons at the unit cell, as indicated by the enhancement in the observed values of the permittivity on replacement of Fe3+ (3d5) by Co3+ (3d6). The contributions of the doped free charges and the oxygen vacancy induced dipoles are separated using the Jump Relaxation Model.  相似文献   

5.
(Ba0.68−xSr0.308Bi0.006Na0.006Mgx)(Ti0.99Sn0.01)O3 ceramics were synthesized by solid-state reaction process. The samples (X ≤ 0.010) are a mixture of cubic (major) and rhombohedral (minor) phases. The rhombohedral phase causes a large dielectric loss in low temperature regions and plays an important role in diffuse phase transition of ceramics. While X > 0.010, the rhombohedral phase decreases and gradually disappears. The dielectric loss of ceramics in the low temperature regions decreases, and the samples change from the diffuse phase transition to the phase transition of second order, and then to of first order. In the temperature range of 270-370 °C, intrinsic conduction dominates conductivity of ceramics.  相似文献   

6.
The Ca1−xSrxCu3Ti4O12 (CSCTO) giant dielectric ceramics were prepared by conventional solid-state method. X-ray diffraction patterns revealed that a small amount of Sr2+ (x < 0.2) had no obvious effect on the phase structure of the CSCTO ceramics, while with increasing the Sr2+ content, a second phase of SrTiO3 appeared. Electrical properties of CSCTO ceramics greatly depended on the Sr2+ content. The Ca0.9Sr0.1Cu3Ti4O12 ceramics exhibited a higher permittivity (71,153) and lower dielectric loss (0.022) when measured at 1 kHz at room temperature. The ceramics also performed good temperature stability in the temperature range from −50 °C to 100 °C at 1 kHz. By impedance spectroscopy analysis, all compounds were found to be electrically heterogeneous, showing semiconducting grains and insulating grain boundaries. The grain resistance was 1.28 Ω and the grain boundary resistance was 1.31 × 105 Ω. All the results indicated that the Ca0.9Sr0.1Cu3Ti4O12 ceramics were very promising materials with higher permittivity for practical applications.  相似文献   

7.
CaCu3Ti4O12 (stoichiometric) and Ca1.1Cu2.9Ti4O12 (non-stoichiometric) thin films have been prepared by the soft chemical method on Pt/Ti/SiO2/Si substrates, and their electrical and dielectric properties have been compared as a function of the annealing temperature. The crystalline structure and the surface morphology of the films were markedly affected by the annealing temperature and excess calcium. The films show frequency-independent dielectric properties at room temperature which is similar to those properties obtained in single-crystal or epitaxial thin films. The room temperature dielectric constant of the 570-nm-thick CCTO thin films annealed at 600 °C at 10 kHz was found to be 124. The best non-ohmic behavior (α = 12.6) presented by the film with excess calcium annealed at 500 °C. Resistive hysteresis on the I-V curves was observed which indicates these films can be used in resistance random access memory (ReRAM).  相似文献   

8.
Pb0.5Sr0.5TiO3 (PST) thin films were fabricated by the alkoxide-based sol–gel process using spin-coating method on Pt/Ti/SiO2/Si substrate. The PST films annealed from 500 °C to 650 °C for 1 h show a perovskite phase and dense microstructure with a smooth surface. The grain size and dielectric constant of PST films increase with the increase in annealing temperature, which reduces the SiO2 equivalent thickness of the PST film. The crystallinity or internal strain in the PST thin films analyzed from the diffraction-peak widths correlates well with the decrease in the dielectric losses. The dielectric constants and dielectric loss (%) of the PST films annealed at 650 °C (teq=0.89 nm) were 549 and 0.21%, respectively.  相似文献   

9.
Lead-free piezoelectric ceramics Sr2−xCaxNaNb5O15 + y wt% MnO2have been prepared by the conventional solid state reaction method. Our results reveal that Ca2+and Mn ions have entered into the Sr2NaNb5O15 lattices to form a solid solution with tungsten-bronze structure. The substitution of Ca2+ induces a decrease in piezoelectric coefficient d33, electromechanical coupling factors kp and kt, while, the addition of Mn ions decreases the sintering temperature and effectively promotes the densification of the ceramics. The effect of substitution of Ca2+and Mn ions on the structure, electrical properties and diffused phase changing were investigated systematically. For the ceramic with x = 0.05 and y = 0.5, the piezoelectric, dielectric and ferroelectric properties become optimum, giving a piezoelectric coefficient d33 = 190 pC/N, electromechanical coupling factors kp = 13.4% and kt = 36.5%, ?r = 2123, loss tangent tan δ = 0.038, remanent polarization Pr = 4.76 μC/cm2, coercive field Ec = 12.68 kV/cm, and Curie temperature Tc = 260 °C.  相似文献   

10.
Ceramics in the system La(Mg1−xZnx)1/2Ti1/2O3 with B2O3 additions (1 wt.%) have been investigated by the conventional solid-state route. The XRD patterns of the sintered samples (0.3 ≤ x ≤ 1.0) revealed single phase formation with a structure. The unit cell volume slightly increased with increasing Zn content (x). La(Mg1−xZnx)1/2Ti1/2O3 were found to form perovskite solid solutions in the whole compositional range. The maximum values of the dielectric constant and the quality factor multiples resonant frequency (Q × f) can be obtained when the La(Mg0.7Zn0.3)1/2Ti1/2O3 with 0.5 wt.% B2O3 additive were sintered at 1475 °C for 4 h. The temperature coefficient of resonant frequency τf (−63 ppm/°C) was measured for x = 0.7.  相似文献   

11.
The Li2ZnxCo1−xTi3O8 (x = 0.2-0.8) solid solution system has been synthesized by the conventional solid-state ceramic route and the effect of Zn substitution for Co on microwave dielectric properties of Li2CoTi3O8 ceramics has also been investigated. The microwave dielectric properties of these ceramics show a linear variation between the end members for all compositions. The optimized sintering temperatures of Li2ZnxCo1−xTi3O8 ceramics increase with increasing content of Zn. The specimen with x = 0.4 sintered at 1050 °C/2 h exhibits an excellent combination of microwave dielectric properties with ?r = 27.7, Qu × f = 57,100 GHz and τf = −1.0 ppm/°C.  相似文献   

12.
In this work, we report on two kinds of PbZrO3 (PZO) antiferroelectric (AFE) thin films with a thickness of about 700 nm, which were fabricated by using zirconium isopropoxide and zirconium nitrate as starting materials, respectively. The effects of the raw materials on microstructure and electrical properties of the PZO AFE films were studied in detail. X-ray diffraction and scanning electron microcopy results showed that the PZO films obtained from zirconium isopropoxide were highly (1 1 1)-oriented and had a more uniform surface microstructure. As a result, the PZO films from zirconium isopropoxide accordingly displayed better electrical properties, such as lager dielectric constant, increased saturated polarization, and smaller leakage current.  相似文献   

13.
Polycrystalline indium doped CdS0.2Se0.8 thin films with varying concentrations of indium have been prepared by spray pyrolysis at 300 °C. The as deposited films have been characterized by XRD, AFM, EDAX, optical and electrical resistivity measurement techniques. The XRD patterns show that the films are polycrystalline with hexagonal crystal structure irrespective of indium doping concentration. AFM studies reveal that the RMS surface roughness of film decreases from 34.68 to 17.76 with increase in indium doping concentration up to 0.15 mol% in CdS0.2Se0.8 thin films and further it increases for higher indium doping concentrations. Traces of indium in CdS0.2Se0.8 thin films have been observed from EDAX studies. The optical band gap energy of CdS0.2Se0.8 thin film is found to decrease from 1.91 eV to 1.67 eV with indium doping up to 0.15 mol% and increase after 0.15 mol%. The electrical resistivity measurement shows that the films are semiconducting with minimum resistivity of 3.71 × 104 Ω cm observed at 0.15 mol% indium doping. Thermoelectric power measurements show that films exhibit n-type conductivity.  相似文献   

14.
We present the structural, microstructural, dielectric and impedance behavior of Pb0.7Sr0.3[(Fe2/3Ce1/3)0.012Ti0.988]O3 (PSFCT) and Pb0.7Sr0.3[(Fe2/3La1/3)0.012Ti0.988]O3 (PSFLT) nanoparticles. These nanoparticles were prepared by a chemical synthesis route using polyvinyl alcohol as surfactant. The X-ray diffraction pattern shows polycrystalline nature with coexistence of tetragonal and cubic phase in both PSFCT and PSFLT nanoparticles. The average particle size has been measured using Scherer's relation. The average particle sizes also measured by TEM are 10 and 11 nm, and by SEM 9 and 12 nm, respectively, of PSFCT and PSFLT nanoparticles. By measuring the value of relative permittivity (?′) and loss (tan δ) at lower frequency, the dielectric properties show Maxwell-Wagner type interfacial polarization. However, due to nano size effect of PSFCT and PSFLT, dispersionless dielectric response has been observed up to higher frequency of 15 MHz. The frequency dependent real (Z′) and imaginary (Z″) parts of impedance confirmed the variation which was observed in dielectric properties. The values of resistance of grain boundaries, Rgb is higher than grains, Rg indicates that the effect of grain boundaries is dominant on electrical properties when the size of nanoparticles is quite small.  相似文献   

15.
Composite ceramics in the solid solution of Zrx(Zn1/3Nb2/3)1−xTiO4 (x = 0.1-0.4) have been prepared by the mixed oxide route. Formation of solid solution was confirmed by the X-ray diffraction patterns. The microwave dielectric properties, such as dielectric constant (?r), Q × f value and temperature coefficient of resonant frequency (τf) have been investigated as a function of composition and sintering temperature. With x increasing from 0.1 to 0.4, the dielectric constant decreases from 70.9 to 43.2, and the τf decreases from 105 to 55 ppm/°C. The Q × f value, however, increases with increasing x value to a maximum 26,600 GHz (at 6 GHz) at x = 0.3, and then decreases thereafter. For low-loss microwave applications, a new microwave dielectric material Zr0.3(Zn1/3Nb2/3)0.7TiO4, possessing a fine combination of microwave dielectric properties with a high ?r of 51, a high Q × f of 26,600 GHz (at 6 GHz) and a τf of 70 ppm/°C, is suggested.  相似文献   

16.
0.95MgTiO3-0.05CaTiO3 (MCT) nano powders were synthesised using sol-gel method and high energy ball milling (HEBM). Synthesised powders were characterised using X-ray diffraction analysis to ensure phase purity and HRTEM to determine the fine microstructural features like particle size, interplanar spacing, etc. The powder pellets were heat treated to study the sinterability and microwave dielectric properties and these properties were then compared with the microwave dielectric properties of micron sized sample. Nano powder synthesised using HEBM shows better dielectric properties, sinterability and gets densified to 90% of theoretical density (TD) at 1200 °C/2 h. Dielectric resonators prepared using chemically synthesised nano powder showed poor sinterability and microwave dielectric properties, but, dielectric properties of HEBM samples were very near to that of solid state synthesised samples. Sintered HEBM powders retain the microwave dielectric properties almost to the same level as the solid state synthesised powder with considerable lowering of sintering temperature.  相似文献   

17.
为寻找性能更为优异的陶瓷热障涂层材料,采用固相反应法合成了单斜结构的GdTaO_4陶瓷材料,分析了其微观组织形貌。第一性原理计算结果表明其沿[100]晶向的杨氏模量值约为[010]和[001]方向上的3倍。实验测得800℃下其热导率约为1.70 W·m~(-1)·K~(-1),明显低于7YSZ和8YSZ在800℃下的热导率(分别约为2.37和2.47 W·m~(-1)·K~(-1)),是一种潜在的低热导陶瓷热障涂层材料。  相似文献   

18.
The optical, dielectric, and structural characteristics of Si15Sb85 phase change memory thin films under a moving continuous-wave laser initialization are studied by using spectroscopic ellipsometry and high-resolution transmission electron microscopy. The dependence of complex refractive index, dielectric functions, absorption coefficient, and optical band gap of the films on its crystallization extents formed by the different initialization laser power are analyzed in detail. The structural change from as-deposited amorphous phase to distorted rhombohedra-Sb-like crystalline structure with the increase of initialization laser power is clearly observed with sub-nanometer resolution. The optical and dielectric constants, the relationship between them, and the local atomic arrangements of this new phase change material can help explain the phase change mechanism and design the practical phase change memory devices.  相似文献   

19.
Both a binary amorphous system of composition As2Se3 and a ternary amorphous system of composition amorphous (As2Se3)0.99In0.01 with thickness in the range 150–250 nm have been prepared by thermal evaporation technique. Indium doping and thickness effects on the features of As2Se3 thin films have investigated. The optical transmission spectra of these films have been measured in the range 200–1200 nm where the absorption coefficient and the optical energy gap Eg are evaluated. The refractive index and surface roughness of the prepared films are found to be highly dependent on film thickness and indium doping, using Swanepoel method.The single oscillator energy (Eo) and the energy dispersion parameter (Ed) have been calculated and discussed in terms of the Wemple and DiDomenico model. The results reveal that, they are thickness dependent—both Eo and Ed being higher for the undoped samples than that for the doped films.  相似文献   

20.
Pure and Gd-doped barium zirconate titanate (BaZr0.1Ti0.9O3, BZT) ceramics were prepared by solid state reaction method. Phase analysis showed the formation of the pyrochlore phase (Gd2Ti2O7) at about 5 mol% Gd doping in BZT. The microstructural investigation on the sintered ceramics showed that Gd doping significantly reduced the grain size of pure BZT ceramics, from about 100 μm to 2-5 μm. Change in the Gd concentration had minor influence on the grain size and on morphology. An increase in the Gd content decreased the Curie temperature (TC) of the BZT ceramics. The maximum dielectric constant at TC was observed for 2 mol% Gd and with further increase in Gd content the dielectric constant at TC decreased. The dielectric constant was significantly improved compared to that of pure BZT ceramic. Tunable dielectric materials with good dielectric properties can be prepared by doping BZT with Gd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号