首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A dual codoping method has been proposed to fabricate low resistive and stable p-ZnO thin films. Both nitrogen (N) and arsenic (As) have been used as acceptors while aluminum (Al) as donor in our dual codoping process. The As-Al-N dual codoped ZnO films have been prepared by RF magnetron sputtering on GaAs substrate using AlN doped ZnO targets (0.5, 1 and 2 mol%). In our dual codoping approach, Al and N from target and As from GaAs substrate (back diffusion) take part. X-ray diffraction (XRD), room temperature and low temperature photoluminescence (PL), electron probe micro analysis (EPMA), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM) and Hall effect measurement have been performed to investigate the effect of AlN concentration on the dual codoped ZnO films. All the films (0, 0.5 and 1 mol%) showed p-type conductivity except 2 mol% AlN doped film. The lowest room temperature resistivity, 8.6 × 10−2 Ω cm has been achieved with a hole concentration of the order, 1020 cm−3 for the optimum 1 mol% AlN concentration. The observed resistivity is much lower than that of monodoped (As or N) and codoped (AlN or AlAs) ZnO films. The p-type conductivity has been explained by the new complex formation mechanism.  相似文献   

2.
The Sb-doped ZnO (ZnO:Sb) and undoped ZnO films with wurtzite structure and (0 0 2) preferred orientation were deposited on Si(1 0 0) substrate at 550 °C. It is deduced from XRD and XPS measurements that the Sb in the as-grown ZnO:Sb has high oxidation state and dopes in the form of oxygen-rich Sb-O clusters, which results in a large inner stress and a great increase of the c-axis lattice constant. After annealing at 750 °C under vacuum, the c-axis lattice constant of the ZnO:Sb decreases sharply to near the value of ZnO bulk, the electrical properties change from n-type to p-type and the PL intensity ratio of the visible to ultraviolet emission band goes down greatly, as the Sb content increases from 0 to 2.1 at.%. EDS and XRD measurements indicate that some of Sb dopants escape from the ZnO:Sb films and the oxygen-rich Sb-O clusters vanished after the annealing process. The effect of the change in Sb doping behavior on crystal structure, conductivity and PL is discussed in detail.  相似文献   

3.
Aluminum doped zinc oxide (ZnO:Al) films were reactively sputtered at a high discharge power from dual rotating metallic targets (Zn:Al = 99.5:0.5 wt.%). Deposition conditions like substrate temperature and working points were varied in order to prepare high quality ZnO:Al films. The influences on electrical and optical ZnO:Al thin film properties and surface texture before and after chemical etching in diluted HCl were studied in order to achieve light scattering films as front contact for solar cells. High dynamic deposition rate close to 90 nm m/min and high Hall mobility of up to 47 cm2/Vs were obtained. Transmission of more than 85% in the visible spectral range is obtained for all ZnO:Al films in this study. In addition, the absorption in near infrared region is low due to low doping. Surface texture after etching is usually much rougher than before. However, some films reveal after etching small surface features that are similar to initial surface features. We propose a relationship between initial and post-etched surface textures.  相似文献   

4.
In this study, N-doped ZnO thin films were fabricated by oxidation of ZnxNy films. The ZnxNy thin films were deposited on glass substrates by pulsed filtered cathodic vacuum arc deposition (PFCVAD) using metallic zinc wire (99.999%) as a cathode target in pure nitrogen plasma. The influence of oxidation temperature, on the electrical, structural and optical properties of N-doped ZnO films was investigated. P-type conduction was achieved for the N-doped ZnO obtained at 450 °C by oxidation of ZnxNy, with a resistivity of 16.1 Ω cm, hole concentration of 2.03 × 1016 cm−3 and Hall mobility of 19 cm2/V s. X-ray photoelectron spectroscopy (XPS) analysis confirmed the incorporation of N into the ZnO films. X-ray diffraction (XRD) pattern showed that the films as-deposited and oxidized at 350 °C were amorphous. However, the oxidized films in air atmosphere at 450-550 °C were polycrystalline without preferential orientation. In room temperature photoluminescence (PL) spectra, an ultraviolet (UV) peak was seen for all the samples. In addition, a broad deep level emission was observed.  相似文献   

5.
In this research, nickel oxide (NiO) transparent semiconducting films are prepared by spray pyrolysis technique on glass substrates. The effect of Ni concentration in initial solution and substrate temperature on the structural, electrical, thermoelectrical, optical and photoconductivity properties of NiO thin films are studied. The results of investigations show that optimum Ni concentration and suitable substrate temperature for preparation of basic undoped NiO thin films with p-type conductivity and high optical transparency is 0.1 M and 450 °C, respectively. Then, by using these optimized deposition parameters, nickel-lithium oxide ((Li:Ni)Ox) alloy films are prepared. The XRD structural analysis indicate the formation of the cubic structure of NiO and (Li:Ni)Ox alloy films. Also, in high Li doping levels, Ni2O3 and NiCl2 phases are observed. The electrical measurements show that the resistance of the films decreases with increasing Li level up to 50 at%. For these films, the optical band gap and carrier concentration are obtained to be 3.6 eV and 1015-1018 cm−3, respectively.  相似文献   

6.
Filtered vacuum (cathodic) arc deposition (FVAD, FCVD) of metallic and ceramic thin films at low substrate temperature (50-400 °C) is realized by magnetically directing vacuum arc produced, highly ionized, and energetic plasma beam onto substrates, obtaining high quality coatings at high deposition rates. The plasma beam is magnetically filtered to remove macroparticles that are also produced by the arc. The deposited films are usually characterized by their good optical quality and high adhesion to the substrate. Transparent and electrically conducting (TCO) thin films of ZnO, SnO2, In2O3:Sn (ITO), ZnO:Al (AZO), ZnO:Ga, ZnO:Sb, ZnO:Mg and several types of zinc-stannate oxides (ZnSnO3, Zn2SnO4), which could be used in solar cells, optoelectronic devices, and as gas sensors, have been successfully deposited by FVAD using pure or alloyed zinc cathodes. The oxides are obtained by operating the system with oxygen background at low pressure. Post-deposition treatment has also been applied to improve the properties of TCO films.The deposition rate of FVAD ZnO and ZnO:M thin films, where M is a doping or alloying metal, is in the range of 0.2-15 nm/s. The films are generally nonstoichiometric, polycrystalline n-type semiconductors. In most cases, ZnO films have a wurtzite structure. FVAD of p-type ZnO has also been achieved by Sb doping. The electrical conductivity of as-deposited n-type thin ZnO film is in the range 0.2-6 × 10− 5 Ω m, carrier electron density is 1023-2 × 1026 m− 3, and electron mobility is in the range 10-40 cm2/V s, depending on the deposition parameters: arc current, oxygen pressure, substrate bias, and substrate temperature. As the energy band gap of FVAD ZnO films is ∼ 3.3 eV and its extinction coefficient (k) in the visible and near-IR range is smaller than 0.02, the optical transmission of 500 nm thick ZnO film is ∼ 0.90.  相似文献   

7.
Polycrystalline indium doped CdS0.2Se0.8 thin films with varying concentrations of indium have been prepared by spray pyrolysis at 300 °C. The as deposited films have been characterized by XRD, AFM, EDAX, optical and electrical resistivity measurement techniques. The XRD patterns show that the films are polycrystalline with hexagonal crystal structure irrespective of indium doping concentration. AFM studies reveal that the RMS surface roughness of film decreases from 34.68 to 17.76 with increase in indium doping concentration up to 0.15 mol% in CdS0.2Se0.8 thin films and further it increases for higher indium doping concentrations. Traces of indium in CdS0.2Se0.8 thin films have been observed from EDAX studies. The optical band gap energy of CdS0.2Se0.8 thin film is found to decrease from 1.91 eV to 1.67 eV with indium doping up to 0.15 mol% and increase after 0.15 mol%. The electrical resistivity measurement shows that the films are semiconducting with minimum resistivity of 3.71 × 104 Ω cm observed at 0.15 mol% indium doping. Thermoelectric power measurements show that films exhibit n-type conductivity.  相似文献   

8.
Zinc oxide thin films with low resistivity have been deposited on glass substrates by Li-N dual-acceptor doping method via a modified successive ionic layer adsorption and reaction process. The thin films were systematically characterized via scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, ultraviolet-visible spectrophotometry and fluorescence spectrophotometry. The resistivity of zinc oxide film was found to be 1.04 Ω cm with a Hall mobility of 0.749 cm2 V−1 s−1 and carrier concentration of 8.02 × 1018 cm−3. The Li-N dual-acceptor doped zinc oxide films showed good crystallinity with prior c-axis orientation, and high transmittance of about 80% in visible range. Moreover, the effects of Li doping level and other parameters on crystallinity, electrical and ultraviolet emission of zinc oxide films were investigated.  相似文献   

9.
In doped ZnO thin films   总被引:4,自引:0,他引:4  
ZnO thin films were deposited by ultrasonic spray technique, zinc acetate was used as starting solution with a molarity of 0.1 M. A set of indium (In) doped ZnO (between 2 and 8 wt%) thin films were grown on glass substrate at 350 °C. The present work is focused on the influence of the doping level on the structural, optical and electrical films properties. Optical film characterization was carried by using UV-visible transmission spectroscopy, the optical gap was deduced from absorption. From X ray diffraction (XRD) analysis, we have deduced that ZnO films are formed with nanocrystalline structure with preferential (0 0 2) orientation. The grain size is increased with In doping from 28 to 37 nm. Electrical characterization was achieved using two-probes coplanar structure, the measured conductivity varies from 2.3 to 5.9 Ω cm−1 when increasing the doping level. However the optical gap is reduced from 3.4 to 3.1 eV.  相似文献   

10.
《Acta Materialia》2008,56(18):5066-5070
The electrical conductivity of phosphorus-doped ZnO (P:ZnO) was found to change with sputter substrate temperature. Unexpectedly, n-type conductivity was obtained for samples deposited at substrate temperatures of 200, 250 and 300 °C, but p-type conductivity was achieved for samples deposited at room temperature (RT). The type of a ZnO sample was determined and cross-checked by using three different techniques: the Hall effect, the Seebeck effect and magnetic field-dependent Hall voltage measurements. The n-type samples had conductivities of 11–45 S cm−1 and the p-type sample possessed a conductivity of 0.74 S cm−1. Furthermore, significantly different activation energies were found for the n-type (10 meV) and p-type (134 meV) P:ZnO samples, which were in good agreement with the positions of the donor and acceptor levels in the band structure reported in the literature. SIMS profiling measurement revealed that the oxygen concentration in the P:ZnO film deposited at RT was clearly higher than those in the films deposited at higher substrate temperatures. The results and relevant mechanisms were discussed. It appears that the n-type or p-type conductivity of a P:ZnO sample was determined mainly by the dominance of the n-type defect donors or the P induced acceptors.  相似文献   

11.
T.-H. Yang  J.-M. Wu 《Acta Materialia》2012,60(8):3310-3320
The thermal stability of sol–gel p-type Al–N codoped ZnO films was investigated by high-resolution X-ray photoelectron spectroscopy (XPS). XPS revealed the chemical bonding states and solubility of N-related complex defects in the ZnO films. The concentrations of NO and (NC)O varied with annealing temperature, which led to the change in conduction between p-type and n-type. Variable-temperature Hall-effect measurement showed that NO acted as a shallow acceptor, with its energy level locating at ~114 meV above the valance band maximum. Transmission electron microscopy confirmed the presence of undesired carbon clusters as a graphite state in the ZnO films. In order for Al–N codoped ZnO films to exhibit p-type conductivity, samples could only be annealed in a certain range of temperatures. A hybrid structure with nanostructured ZnO homojunctions was fabricated by spin-coating the p-type Al–N codoped ZnO film on an n-type ZnO nanorod array (ZNA). The hybrid nanostructure was demonstrated to possess rectification behavior characteristic of a p–n junction. The leakage current of the nanostructured ZnO homojunctions was smaller by a factor of 2 than that of the film-based ZnO homojunction at a reverse bias of 5 V. The p-type ZnO film/n-type ZNA structure can be applied as a versatile p–n optoelectronic device.  相似文献   

12.
Highly transparent, p-type conducting SnO2:Zn thin films are prepared from the thermal diffusion of a sandwich structure of Zn/SnO2/Zn multilayer thin films deposited on quartz glass substrate by direct current (DC) and radio frequency (RF) magnetron sputtering using Zn and SnO2 targets. The deposited films were annealed at various temperatures for thermal diffusion. The effect of annealing temperature and time on the structural, electrical and optical performances of SnO2:Zn films was studied. XRD results show that all p-type conducting films possessed polycrystalline SnO2 with tetragonal rutile structure. Hall effect results indicate that the treatment at 400 °C for 6 h was the optimum annealing parameters for p-type SnO2:Zn films which have relatively high hole concentration and low resistivity of 2.389 × 1017 cm− 3 and 7.436 Ω cm, respectively. The average transmission of the p-type SnO2:Zn films was above 80% in the visible light range.  相似文献   

13.
Gallium-doped ZnO (GZO) semiconductor thin films were prepared by a sol-gel spin coating process. The effects of Ga dopant concentrations on the microstructure, electrical resistivity, optical properties, and photoluminescence (PL) were studied. XRD results showed that all the as-prepared GZO films had a wurtzite phase and a preferred orientation along the [0 0 2] direction. ZnO thin films doped with Ga had lower electrical resistivity, lower RMS roughness, and improved optical transmittance in the visible region. The lowest average electrical resistivity value, 2.8 × 102 Ω cm, was achieved in the ZnO thin films doped with 2% Ga, which exhibited an average transmittance of 91.5%. This study also found that the optical band gap of Ga-doped films was 3.25 eV, slightly higher than that of undoped samples (3.23 eV), and the PL spectra of GZO films showed strong violet-light emission centers at about 2.86 eV (the corresponding wavelength of which is about 434 nm).  相似文献   

14.
A series of K doped Zn1−xMgxO thin films have been prepared by pulsed laser deposition (PLD). Hall-effect measurements indicate that the films exhibit stable p-type behavior with duration of at least six months. The band gap of the K doped Zn1−xMgxO films undergoes a blueshift due to the Mg incorporation. However, photoluminescence (PL) results reveal that the crystallinity decreased with the increasing of Mg content. The fabricated K doped p-type Zn0.95Mg0.05O thin film exhibits good electrical properties, with resistivity of 15.21 Ω cm and hole concentration of 5.54 × 1018 cm−3. Furthermore, a simple ZnO-based p-n heterojunction was prepared by deposition of a K-doped p-type Zn0.95Mg0.05O layer on Ga-doped n-type ZnO thin film with low resistivity. The p-n diode heterostructure exhibits typical rectification behavior of p-n junctions.  相似文献   

15.
Metal-doped (B and Ta) ZnO thin films were deposited by the electrospraying method onto a heated glass substrate. The structural, electrical and optical properties of the films were investigated as a function of dopant concentration in the solution and also as a function of annealing temperature. The results show that all the prepared metal-doped ZnO films were polycrystalline in nature with a (0 0 2) preferred orientation. As the amounts of dopant were increased in the starting solution, the crystallinity and transmittance decreased. On the other hand, heat treatment of the films enhanced the transmittance, Hall mobility, carrier concentration and crystallinity. It was also observed that 2 at.% is the optimal doping amount in order to achieve the minimum resistivity and maximum optical transmittance. As-deposited films have high resistivity and low optical transmittance. The annealing of the as-deposited thin films in air resulted in the reduction of resistivity. Depending on the characteristics of dopant, mainly ionic radius, the effects of dopant were studied on the properties of ZnO thin films. Boron and tantalum have been considered as dopants, tantalum being the superior of the two, since it showed the lower resistivity and higher carrier concentration as well as higher mobility. The minimum value of resistivity was 1.95 × 10− 4 Ω cm (15 Ω/□) with an optical transmittance more than 93% in the visible region and minimum resistivity of 2.16 × 10− 4 Ω cm (18 Ω/□) with an optical transmittance greater than 96% for 2 at. % tantalum- and boron-doped ZnO films respectively. The present values of resistivities were closer to the indium tin oxide (ITO) resistivity and also closest to the lowest resistivity values among the ZnO films that were previously reported. The prepared films exhibit the good crystalline structure, homogenous surface, high optical transmittance and low resistivity that are preferable for optical devices.  相似文献   

16.
Nitrogen-doped, p-type ZnO thin films were grown successfully on sapphire (0001) substrates by using atomic layer epitaxy (ALE). Zn(C2H5)2[Diethylzinc,DEZn], H2O and NH3 were used as a zinc precursor, an oxidant and a doping source gas, respectively. The lowest electrical resistivity of the p-type ZnO films grown by ALE and annealed at 1000 ℃ in an oxygen atmosphere for 1 h was 18.3 Ω·m with a hole concentration of 3.71×1017cm-3 . Low temperature-photoluminescence analysis and time-dependent Hall measurement results support that the nitrogen-doped ZnO after annealing is ap-type semiconductor.  相似文献   

17.
ZnO thin films doped with Al concentrations of 1.0, 2.0, 3.0, 4.0, 5.0 at% were prepared by a sol-gel spin-coating method on glass substrates and respectively annealed at 550 °C for 2 h in hydrogen and air. The X-ray diffraction and selected-area electron diffraction results confirm that the Al doped ZnO thin films are of wurtzite hexagonal ZnO. The scanning electron microscope results indicate that the Al doped ZnO nanorod thin films can be got by annealing in hydrogen rather than in air. The optical properties reveal that the Al doped ZnO thin films have obviously enhanced transmittance in the visible region. The electrical properties show that the resistivity of 1.0 at% Al doped ZnO thin films has been remarkably reduced from 0.73 Ω m by annealing in air to 3.2 × 10−5 Ω m by annealing in hydrogen. It is originated that the Al doped ZnO nanorod thin films annealed in hydrogen increased in electron concentration and mobility due to the elimination of adsorbed oxygen species, and multicoordinated hydrogen.  相似文献   

18.
An improvement in the thermoelectric power factor of Al doped ZnO has been achieved by means of co-doping with indium using a dual magnetron sputtering system. The concentration of indium in the film was varied from 0 to 10 atomic % by varying the RF power of the In target, with the ZnO:Al target fixed at 100 W. It has been found that the films with In concentrations at or below 5 at.% have no significant change in microstructure, and yet a marked improvement in thermopower. At higher doping levels, the Seebeck coefficient continues to increase, however poly-crystallinity is induced in the ZnO matrix which results in a considerable decrease in electrical conductivity. This factor ultimately has a negative impact on the materials power factor. Taking into account the films studied, (ZnO)Al.03In.02 exhibited the best thermoelectric properties with an electrical conductivity of 5.88 × 102 S/cm and a Seebeck coefficient of −220 μV/K at 975 K, resulting in a power factor is 22.1 × 10−4 Wm−1 K−2, which is three times greater than for the film with no In doping. Film microstructure, composition, and thermal stability were investigated using X-ray diffraction, scanning electron microscopy, and Auger electron spectroscopy.  相似文献   

19.
In this work, 1 at.% K-doped ZnO thin films were prepared by sol-gel method on Si substrates. The evolution behavior of the structures and photoluminescence of these films under different annealing temperatures was deeply studied. The crystal structures and surface morphology of the samples were analyzed by an X-ray diffractometer and an atomic force microscope, respectively. The photoluminescence spectra were used to study the luminescent behavior of the samples. The results showed that the films had a hexagonal wurtzite structure and were preferentially oriented along the c-axis perpendicular to the substrate surface. All the samples showed a strong ultraviolet emission and a weak blue emission. With the increase of annealing temperature, the ZnO grains gradually grew up; at the same time, the blue emission gradually decreased. The sample annealed at 500 °C showed the best crystalline quality and strongest ultraviolet emission. The authors think that the blue emission in these samples is mainly connected with K interstitial defects. When the 1 at.% K-doped ZnO thin film is annealed at high temperatures (≥600 °C), most of K interstitials move into ZnO lattice sites replacing Zn. As a result, the blue emission resulting from K interstitial defects also decreased.  相似文献   

20.
Zinc oxide (ZnO) is a wide band-gap material with excellent optoelectronic properties. However, the application of ZnO to optoelectronic devices using ZnO has been hindered by the difficulty in obtaining a stable p-type doping. The paper demonstrates that, with a proper selection of the nitrogen precursor, a solution processable, highly c-axis oriented, stable, and p-type aluminium co-doped ZnO (NZO) formation can be obtained. In this study, the NZO films were characterized by using EDS, Raman spectroscopy, photoluminescence, and electrical measurements, respectively. The films were then synthesized through a sol-gel process that was below 600 °C. For the comparative study, NZO films without the Al co-doping were also prepared by sputter. It is observed and shown that, with the formation of nitrous oxide, the basic deposition condition will be more beneficial towards the formation of p-type ZnO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号