首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Influence of field recycled coarse aggregate on properties of concrete   总被引:1,自引:0,他引:1  
This paper investigates the influence of different amounts of recycled coarse aggregates obtained from a demolished RCC culvert 15 years old on the properties of recycled aggregate concrete (RAC). A new term called “coarse aggregate replacement ratio (CRR)” is introduced and is defined as the ratio of weight of recycled coarse aggregate to the total weight of coarse aggregate in a concrete mix. To analyze the behaviour of concrete in both the fresh and hardened state, a coarse aggregate replacement ratio of 0, 0.25, 0.50 and 1.0 are adopted in the concrete mixes. The properties namely compressive and indirect tensile strengths, modulus of elasticity, water absorption, volume of voids, density of hardened concrete and depth of chloride penetration are studied. From the experimental results it is observed that the concrete cured in air after 7 days of wet curing shows better strength than concrete cured completely under water for 28 days for all coarse aggregate replacement ratios. The volume of voids and water absorption of recycled aggregate concrete are 2.61 and 1.82% higher than those of normal concrete due to the high absorption capacity of old mortar adhered to recycled aggregates. The relationships among compressive strength, tensile strengths and modulus of elasticity are developed and verified with the models reported in the literature for both normal and recycled aggregate concrete. In addition, the non-destructive testing parameters such as rebound number and UPV (Ultrasonic pulse velocity) are reported. The study demonstrates the potential use of field recycled coarse aggregates (RCA) in concrete.  相似文献   

2.
The investigation performed was aimed at showing the influence of high temperatures on the mechanical properties and properties that affect the measurement by non-destructive methods (rebound hammer and pulse velocity) of concrete containing various levels (10% and 30%) of pozzolanic materials. Three types of Pozzolans, one natural pozzolan and two lignite fly ashes (one of low and the other of high lime content) were used for cement replacement. Two series of mixtures were prepared using limestone and siliceous aggregates. The W/b and the cementitius material content were maintained constant for all the mixtures. Concrete specimens were tested at 100, 300, 600 and 750 °C for 2 h without any imposed load, and under the same heating regime. At the age of 3 years, tests of compressive strength, modulus of elasticity, rebound hummer and pulse velocity were come out. Results indicate that the residual properties of concrete strongly depend on the aggregates' and the binder type. Relationships between strength of concrete as well as rebound and pulse velocity versus heating temperatures are established. The above results are evaluated to establish a direct relationship between non-destructive measurements and compressive strength of concrete exposed to fire.  相似文献   

3.
The intention of this experimental work is to investigate the influence of elevated temperatures of short duration (usually during fires in buildings) on the properties of concrete that affect the measurements by non-destructive methods (rebound hammer and pulse velocity). Relationships between strength of concrete as well as rebound and pulse velocity versus heating temperatures are established. Finally, the above results are evaluated to find the direct relation between non-destructive measurements and strength of concrete exposed to fire.  相似文献   

4.
史才军  曹芷杰  谢昭彬 《材料导报》2016,30(23):96-103, 126
再生混凝土的应用,不仅能够解决废弃混凝土处理问题;又能降低因资源过度开采所引起的生态环境破坏,因而具有广阔的发展前景。相比于普通混凝土,再生混凝土的抗压强度、弹性模量以及抗疲劳性能较低,主要与再生骨料多方面因素的影响有关。对近年来再生混凝土力学性能相关研究进展进行了综述,再生骨料总吸水率是降低抗压强度的主要原因,疲劳性能则主要与再生骨料取代率和附着砂浆含量有关。在再生混凝土中掺加矿物掺合料能够改善新、旧双界面从而提高抗压强度和劈裂抗拉强度,掌握多个因素的影响和作用对再生骨料和再生混凝土进一步研究和应用具有重要意义。  相似文献   

5.
A direct and early-stage nondestructive quality inspection method for concrete in structures is proposed. The advantage of the proposed method is that it can apply ultrasonic pulse velocity and rebound hardness measurements at ages of their highest sensitivities, 24 hours and 3 days after mixing, and can predict the 28-day compressive strength in a satisfactory accuracy. The proposed method involves the combined method of pulse velocity and rebound hardness that can provide versatile information other than strength and possibly predict durability related properties such as tensile strength, dynamic modulus of elasticity, density and water absorption.  相似文献   

6.
为研究不同因素、不同水平对再生混凝土力学性能的作用。该文通过正交试验研究钢纤维掺量、再生粗骨料掺量和粉煤灰掺量对再生混凝土力学性能(抗压强度、劈裂抗拉强度和抗折强度)的影响,确定各因素对再生混凝土力学性能的影响程度,并加以量化表征,并提出多因素共同作用下再生混凝土力学性能的多元非线性回归模型且进行验证。在此基础上,该文进一步研究再生混凝土的抗冻性。结果表明:再生混凝土的力学性能随钢纤维掺量的增加而提高;随粉煤灰掺量增加而降低;再生粗骨料掺量对再生混凝土的力学性能影响较小。钢纤维的掺入可提高再生粗骨料的掺量。再生混凝土力学性能的实测值与通过建立的回归模型得到的计算值的最大误差在6.5%以内。此外,钢纤维的掺入和减少再生粗骨料的掺量均可以提高再生混凝土的抗冻性。  相似文献   

7.
The main objective of this study is to define expedient procedures to estimate the properties of structural concrete that contains recycled aggregates. Experimental results from Portuguese research, most of which supervised by the first author, were used to establish a relationship between some properties of hardened concrete (compressive strength, splitting and flexural tensile strength, modulus of elasticity, abrasion resistance, shrinkage, water absorption, carbonation penetration and chloride penetration) and the density and water absorption of the aggregates’ mixture and also the compressive strength of concrete at the age of 7 days. The workability and density were also analysed for fresh concrete. The graphic analysis of each property shows the relationship between those for recycled aggregate concrete (RAC) mixes and a reference mix using natural aggregates only (RC). The density and water absorption of all the aggregates in the mixture, for each substitution rate, were calculated in order to represent the exact proportion of each type of aggregate (natural and recycled). This method proved to be viable to estimate the variation of the properties of concrete with recycled aggregates by obtaining results for the three parameters mentioned above. This innovative procedure can contribute to increasing the use of recycled aggregates in the construction sector and make it a sustainable activity.  相似文献   

8.
由于残余砂浆的存在,再生粗骨料的物理力学指标远不及天然骨料,致使再生混凝土力学和耐久性能较差;此外,水分及有害离子侵入混凝土内部是引起混凝土材料性能劣化的主要原因。本试验用质量分数为8wt%的硅烷乳液浸渍强化再生粗骨料,通过抗压强度、毛细吸水和抗氯离子侵蚀试验对硅烷浸渍前后不同骨料质量取代率(0%、30%、50%)的再生混凝土介质传输性能进行了研究,最后利用SEM对再生混凝土内部的微观结构进行分析。试验结果表明,硅烷浸渍处理再生粗骨料的吸水率显著降低,由其制备的混凝土强度稍有所下降;再生混凝土毛细累积吸水量明显减少,且抗氯盐侵蚀性能显著提高,其中骨料质量取代率为50%的再生混凝土浸渍处理后氯离子扩散系数降低了37.5%。研究表明,硅烷浸渍处理再生粗骨料是提高再生混凝土耐久性的有效途径。   相似文献   

9.
Abstract

The main components of building rubble collected from demolished structures are waste concrete, brick and tile. A series of experiments using recycled aggregates of various compositions from building rubble were conducted. The test results show that building rubble can be transformed into useful recycled aggregate through proper processing. When the recycled aggregate was washed, the negative effects on the recycled concrete were greatly reduced. This is especially meaningful for flexural strength. Recycled coarse aggregate is the weakest phase given a low water/cement ratio. This effect will dominate the mechanical properties of recycled concrete. On the contrary, using recycled aggregate in concrete has little effect on its mechanical properties if the water/cement ratio is high. This mechanism does not occur in recycled mortar. The quantity of recycled fine aggregate will govern the mortar strength reduction percentage. Although using brick and tile in concrete will affect its mechanical properties, the effect is limited.  相似文献   

10.
为深入研究再生混凝土的破坏形态和内部裂纹扩展情况与普通混凝土之间的差异,以不同再生粗骨料(RCA)取代率的再生混凝土为研究对象,利用Phoenix v | tome | x s240微焦点工业CT获取再生混凝土加载到90%预估破坏荷载的二维扫描图像,借助Photoshop CS6图像处理软件,对材料内部破坏裂纹进行提取,进而基于分形几何理论,以分形维数及多重分形谱表征裂纹的分形扩展规律,建立分形维数和多重分形谱特征参数与RCA取代率和再生混凝土抗压强度的关系。结果表明:再生混凝土的细观受力破坏模式与普通混凝土不同,其受力破坏形态不仅取决于粗骨料与水泥浆体的界面黏结强度,还取决于RCA自身性能,当裂纹发展至天然粗骨料或强度较高的RCA时会绕过骨料表面继续发展,发展至强度较低的RCA时会贯穿骨料;分形维数可定量描述混凝土材料内部细观裂纹的整体扩展情况,即裂纹越丰富,分形维数越大;多重分形谱可反映从局部到整体不同层次的细观裂纹特征,裂纹分形维数和多重分形谱特征参数均与RCA取代率呈线性下降关系,与抗压强度呈线性增长关系;本研究可为再生混凝土在大型结构工程中的广泛应用奠定理论和实验基础。   相似文献   

11.
The increasing amount of waste concrete makes desirable collection of high quality of recycled aggregate from waste concrete to be reused for construction. This research used high grade recycled coarse aggregate (RCA) created using pulsed power technology to make concrete specimens. Concrete created from natural aggregate was also prepared to compare the properties of concrete made using pulsed power recycled aggregate. Established acoustic emission (AE) parameter analyses which are AE hit, relationship between RA value and average frequency, and b-value of AE amplitude distribution were applied to analyze the concrete fracture behavior. In addition, AE Weibull analysis was also proposed to evaluate the reliability of the concrete. A set of AE measurement testing was applied to the concrete specimens during compression loading. At the age of 28 days, compressive strength reaches 35.4 MPa and Young’s modulus is 23.6 GPa. The results indicate that the fracture process and reliability of concrete made using pulsed power RCA is similar to that of natural coarse aggregate concrete suggesting that both concrete have equivalent characteristic under compression. Furthermore, the good agreement results shared by AE Weibull analysis with those of other analyses suggesting this method can also be employed as one parameter to determine the condition of concrete.  相似文献   

12.
In this paper the bond behavior of recycled aggregate concrete was characterized by replacing different percentages of natural coarse aggregate with recycled coarse aggregate (20, 50 and 100 %). The results made it possible to establish the differences between the conventional concrete bond strength and the recycled concrete bond strength depending on the replacement percentage. It was thus found that bond stress decreases with the increase of the percentage of recycled coarse aggregate used. In order to define the influence of recycled aggregate content on bond behavior, normalized bond strength was calculated taking into account the reduced compressive strength of the recycled concretes. Finally, using the experimental results, a modified expression for maximum bond stress (bond strength) prediction was developed, taking into account replacement percentage and compressive strength. The obtained results show that the equation proposed provides an experimental value to theoretical prediction ratio similar to that of conventional concrete.  相似文献   

13.
再生骨料掺配比对再生透水混凝土性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究再生骨料在透水混凝土(RPC)中的应用,选用废弃路面素混凝土块为再生骨料来源,设计2种系列,研究再生骨料透水混凝土中再生骨料掺配问题,即分别以粒径9.5~19.0 mm,再生骨料按0%、25%、50%、75%和100%(基准)质量替代同粒径天然骨料碎石(系列1)和以4.75~9.5 mm、9.5~19.0 mm两种粒径,再生骨料按0∶1、1∶1、1∶2、2∶1、2∶3和3∶2掺比(系列2)制备RPC,并分析其物理、力学、透水性能及其相互关系,得到了合理的再生骨料替代率和双粒级掺比,在1∶1和2∶1掺配下能够得到较好的强度及透水性能。通过切割试块的图像化处理,分析其孔隙分布特征和趋势,并将平面孔隙率、等效孔径和透水系数联系起来。结果表明,再生透水混凝土的透水能力主要取决于截面孔隙个数和面积。  相似文献   

14.
In this paper, the validity and performance of base force element method (BFEM) based on potential energy principle was studied by some numerical examples. And the BFEM on damage mechanics is used to analyze the size effect on tensile strength for recycled aggregate concrete (RAC) at meso-level. The recycled aggregate concrete is taken as five-phase composites consisting of natural coarse aggregate, new mortar, new interfacial transition zone (ITZ), old mortar and old ITZ on meso-level. The random aggregate model is used to simulate the meso-structure of recycled aggregate concrete. The size effects of mechanical properties of RAC under uniaxial tensile loading are simulated using the BFEM on damage mechanics. The simulation results agree with the test results. This analysis method is the new way for investigating fracture mechanism and numerical simulation of mechanical properties for RAC.  相似文献   

15.
This research aims to study the effect of ground fly ash (GFA) and ground bagasse ash (GBA) on the durability of recycled aggregate concrete. Recycled aggregate concrete was produced with recycled aggregate to fully replace crushed limestone in the mix proportion of conventional concrete (CON) and GFA and GBA were used to partially replace Portland cement type I at the rate of 20%, 35%, and 50% by weight of binder. Compressive strength, water permeability, chloride penetration depth, and expansion by sulfate attack on concretes were investigated.The results reveal that the use of GFA and GBA to partially replace cement in recycled aggregate concrete was highly effective in improving the durability of recycled aggregate concrete. The suitable replacement of GFA or GBA in recycled aggregate concrete to obtain the suitable compressive strength, low water permeability, high chloride penetration resistance, and high sulfate resistance is 20% by weight of binder.  相似文献   

16.
This paper reports the results of an experimental investigation into the properties of hardened concrete containing chemically treated expanded polystyrene beads. The results showed that the strength, stiffness and chemical resistance of polystyrene aggregate concrete of a constant density were affected by the water to cement ratio. Drying shrinkage after 84 days of drying for polystyrene concretes, having 10 mm coarse aggregate and a nominal density of 1300 kg/m3, were 730 and 655 microstrains. Empirical equations were developed to relate the strength and pulse velocity and to predict the modulus of elasticity from its strength.  相似文献   

17.
Assessment of the optimal mixture is an important issue to obtain desired quality. This paper integrates grey relational analysis and an objective weighting technique into the Taguchi method to propose the weighted Grey-Taguchi method. This method can be employed to assess the optimal mixture with multiple responses. In the application of this method, water/cement ratio, volume ratio of recycled coarse aggregate, replacement by river sand, content of crushed brick, and cleanliness of aggregate are selected as control factors with responses of slump, slump-flow, resistivity (7-day, 14-day, 28-day), ultrasonic pulse velocity (7-day, 14-day, 28-day), and compressive strength (7-day, 14-day, 28-day) to assess the optimal mixture of recycled aggregate concrete. Results demonstrate and verify that the optimal mixture has a water/cement ratio of 0.5, a volume fraction of recycled coarse aggregate of 42.0%, 100% replacement of river sand, 0% crushed brick, and water-washed aggregates.  相似文献   

18.
The properties of recycled aggregate produced from mixed (masonry and concrete) construction and demolition (C&D) waste are highly variable, and this restricts the use of such aggregate in structural concrete production. The development of classification techniques capable of reducing this variability is instrumental for quality control purposes and the production of high quality C&D aggregate. This paper investigates how the classification of C&D mixed coarse aggregate according to porosity influences the mechanical performance of concrete. Concretes using a variety of C&D aggregate porosity classes and different water/cement ratios were produced and the mechanical properties measured. For concretes produced with constant volume fractions of water, cement, natural sand and coarse aggregate from recycled mixed C&D waste, the compressive strength and Young modulus are direct exponential functions of the aggregate porosity. Sink and float technique is a simple laboratory density separation tool that facilitates the separation of cement particles with lower porosity, a difficult task when done only by visual sorting. For this experiment, separation using a 2.2 kg/dm3 suspension produced recycled aggregate (porosity less than 17%) which yielded good performance in concrete production. Industrial gravity separators may lead to the production of high quality recycled aggregate from mixed C&D waste for structural concrete applications.  相似文献   

19.
The recycling of construction and demolition (C&;D) waste as a source of aggregates for the production of new concrete has attracted increasing interests from the construction industry. While the environmental benefits of using recycled aggregates are well accepted, some unsolved problems prevent this type of material from wide application in structural concrete. One of the major problems with the use of recycled aggregates in structural concrete is their high water absorption capacity which leads to difficulties in controlling the properties of fresh concrete and consequently influences the strength and durability of hardened concrete. This paper presents an experimental study on the properties of fresh concrete prepared with recycled aggregates. Concrete mixes with a target compressive strength of 35 MPa are prepared with the use of recycled aggregates at the levels from 0 to 100% of the total coarse aggregate. The influence of recycled aggregate on the slump and bleeding are investigated. The effect of delaying the starting time of bleeding tests and the effect of using fly ash on the bleeding of concrete are explored.  相似文献   

20.
Concretes containing mixed recycled aggregate (RA) have a larger number of coarse aggregate/paste interfacial transition zones (ITZs) than conventional concretes, due to the various component materials present in recycled aggregate. This study investigated the properties of various RA/paste ITZs in concrete using nanoindentation and scanning electron microscopy (SEM) and analysed the possible impact of the properties of the ITZs on the macro-mechanical performance of recycled concrete. It was found that the elastic modulus of the ITZ varies with the type of constituent materials present in recycled aggregate, with ITZs associated with organic components (e.g. wood, plastic and asphalt) exhibiting lower minimum elastic modulus values. The impact of ITZ properties on macro-mechanical properties of concrete depends on the relative content of different constituent materials present in the recycled aggregate and the micro-mechanical properties of the ITZs involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号