首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 710 毫秒
1.
The creep deformation behavior of eutectic Sn-3.5Ag based Ni particle rein forced composite solder joints was investigated. The Ni particle reinforced composite solder was prepared by mechanically dispersing 15 vol.% of Ni particles into eutectic Sn-3.5Ag solder paste. Static-loading creep tests were carried out on solder joint specimens at 25 C, 65 C, and 105 C, representing homologous temperatures ranging from 0.6 to 0.78. A novel-design, miniature creep-testing frame was utilized in this study. Various creep parameters such as the global and localized creep strain, steady-state creep rate, onset of tertiary creep and the activation energy for creep were quantified by mapping the distorted laser ablation pattern imprinted on the solder joint prior to testing. The Ni-reinforced composite solder joint showed improved creep resistance compared to the results previously reported for eutectic Sn-3.5Ag solder, Sn-4.0Ag-0.5Cu solder alloys, and for eutectic Sn-3.5Ag solder reinforced with Cu or Ag particle reinforcements. The activation energy for creep was ∼0.52 eV for Sn-3.5Ag and Sn-4Ag-0.5Cu solder alloys. The activation energies ranged from 0.55–0.64 eV for Cu, Ag, and Ni reinforced composite solder joints, respectively. Most often, creep fracture occurred closer to one side of the solder joint within the solder matrix.  相似文献   

2.
Quad Flat Pack (QFP) Leads/Sn-3.5Ag-X (X=Bi and Cu) joint was thermally cycled between 243 K and 403 K or 273 K and 373 K, and both metallographic examination and mechanical pull test were performed to evaluate thermal fatigue damage of the joint. The addition of bismuth drastically degrades the thermal fatigue resistance of Sn-3.5Ag solder. On the other hand, the pull strength of Sn-3.5Ag-Cu solder joints slightly decreased with increasing number of thermal cycles, though it still remains higher in comparison to that for conventional Sn-37Pb or bismuth containing solder joint. The behavior observed here reflects the isothermal fatigue properties of bulk solder, because thermal fatigue crack initiates at the surface of solder fillet and propagates within the fillet in an early stage of fatigue damage. Furthermore, the lead phases lying at the interface between lead-frame and bismuth containing solder joint may promote the crack propagation at the interface, resulting in the extremely low thermal fatigue resistance of the joint.  相似文献   

3.
Improved mechanical properties in new,Pb-free solder alloys   总被引:7,自引:0,他引:7  
The mechanical properties of solders benefit from uniform dispersion of fine precipitates and small effective grain sizes. Metallurgical methods of attaining such a beneficial microstructure have been investigated in two new, near-eutectic, Pb-free solder alloys systems—Sn-Zn-In (m.p. ∼188°C) and Sn-Ag-Zn (m.p.∼217°C). It has been found that small alloying additions of Ag dramatically improve the mechanical properties of the ternary Sn-8Zn-5In alloy. The improvement is attributed to the elimination of the coarse and nonuniform distribution of plate-like dendrites and refining the effective grain size in the solidified microstructure. Also, small amounts of Cu dramatically improve the ductility in the ternary Sn-3.5Ag-lZn alloy. The quaternary Sn-3.5Ag-lZn-0.5Cu has better mechanical properties than the binary Sn-3.5Ag alloy because it has a uniform fine dispersion of precipitates and a small effective grain size. The combination of high mechanical strength and high ductility is likely to yield improved fatigue resistance properties in the interconnection of electronic components.  相似文献   

4.
The interfacial reaction in soldering is a crucial subject for the solder-joint integrity and reliability in electronic packaging technology. However, electronic industries are moving toward lead-free alloys because of environmental concerns. This drive has highlighted the fact that the industry has not yet arrived at a decision for lead-free solders. Among the lead-free alloys, Sn-3.5Ag and Sn-3.5Ag-0.5Cu are the two potential candidates. Here, detailed microstructural studies were carried out to compare the interfacial reaction of Sn-3.5Ag and Sn-3.5Ag-0.5Cu solder with a ball grid array (BGA) Cu substrate for different reflow times. The Cu dissolution from the substrate was observed for different soldering temperatures ranging from 230°C to 250°C, and the dissolution was found to increase with time and temperature. Dissolution of Cu in the Sn-3.5Ag solder is so fast that, at 240°C, 12 μm of the Cu substrate is fully consumed within 5 min. Much less dissolution is observed for the Sn-3.5Ag-0.5Cu solder. In respect to such high dissolution, there is no significant difference observed in the intermetallic compound (IMC) thickness at the interface for both solder alloys. A simplistic theoretical approach is carried out to find out the amount of Cu6Sn5 IMCs in the bulk of the solder by the measurement of the Cu consumption from the substrate and the thickness of the IMCs that form on the interface.  相似文献   

5.
This paper reports on the microstructure-creep property relationship of three precipitation-strengthened tin (Sn)-based lead (Pb)-free solder alloys (Sn-0.7Cu, Sn-3.5Ag, and Sn-3.8Ag-0.7Cu) in bulk samples, together with Sn-37Pb as the alloy for comparison at temperatures of 303 K, 348 K, and 393 K. The creep resistance of these three Sn-based Pb-free solders increases, i.e., the steady-state creep rates decrease, with increasing volume fraction of precipitate phases for the Pb-free solder alloys. Their apparent stress exponents (na ∼ 7.3-17), which are all higher than that of pure Sn, attain higher values with increasing volume fraction of precipitate phases at constant temperature, and with decreasing temperature for the same solder alloy.  相似文献   

6.
Recent Observations on Tin Pest Formation in Solder Alloys   总被引:1,自引:0,他引:1  
The most recent observations of the response of bulk samples of several lead-free solder alloys, exposed to temperatures below the allotropic transition for tin for extended periods, are reported. Tin pest has been observed in Sn-0.5Cu, Sn-3.5Ag, Sn-3.8Ag-0.7Cu, and Sn-3.0Ag-0.5Cu alloys at both −18°C and −40°C. The process is slow and inconsistent, usually requiring several years, but may eventually result in complete disintegration of the sample. No tin pest was detected in Sn-Zn-3Bi or in the traditional Sn-37Pb solder alloy after exposure for up to 4 and 10 years, respectively. It is suggested that nucleation is affected by local composition and that extremely small amounts of either intentional solute or impurity are influential. Growth of tin pest is accompanied by a large volume change, and it is likely that stress relaxation ahead of the expanding grey tin front is a controlling factor. A stronger matrix would be more resistant in this case, and at the temperatures of exposure Sn-37Pb is stronger than either Sn-3.5Ag or Sn-0.5Cu. The absence of tin pest, to date, on actual joints is attributed to their restricted free surface area and the greater strength associated with very small samples.  相似文献   

7.
Low-cycle fatigue (LCF) tests on as-cast Sn-3.5Ag, Sn-3Ag-0.5Cu, Sn-3Ag-0.5Cu-1Bi, and Sn-3Ag-0.5Cu-3Bi solders was carried out using a noncontact strain-controlled system at 20°C with a constant frequency of 0.1 Hz. The addition of Cu does not significantly affect the fatigue life of eutectic Sn-Ag solder. However, the fatigue life was significantly reduced with the addition of Bi. The LCF behavior of all solders followed the Coffin-Manson relationship. The fatigue life of the present solders is dominated by the fracture ductility and can be described by the ductility-modified Coffin-Manson’s relationship. Steps at the boundaries of dendrite phases were the initiation sites for microcracks for Sn-3.5Ag, Sn-3Ag-0.5Cu, and Sn-3Ag-0.5Cu-1Bi solders, while for Sn-3Ag-0.5Cu-3Bi solder, cracks initiated along both the dendrite boundaries and subgrain boundaries in the dendrite phases. The linking of these cracks and the propagation of cracks inside the specimen occurred both transgranularly through eutectic phases and intergranularly along dendrite boundaries or subgrain boundaries.  相似文献   

8.
A variety of Pb-free solders and under bump metallurgies (UBMs) was investigated for flip chip packaging applications. The result shows that the Sn-0.7Cu eutectic alloy has the best fatigue life and it possess the most desirable failure mechanism in both thermal and isothermal mechanical tests regardless of UBM type. Although the electroless Ni-P UBM has a much slower reaction rate with solders than the Cu UBM, room temperature mechanical fatigue is worse than on the Cu UBM when coupled with either Sn-3.8Ag-0.7Cu or Sn-3.5Ag solder. The Sn-37Pb solder consumes less Cu UBM than all other Pb-free solders during reflow. However, Sn-37Pb consumes more Cu after solid state annealing. Studies on aging, tensile, and shear mechanical properties show that the Sn-0.7Cu alloy is the most favorable Pb-free solder for flip chip applications. When coupled with underfill encapsulation in a direct chip attach (DCA) test device, the Sn-0.7Cu bump with Cu UBM exhibits a characteristic life or 5322 cycles under -55/spl deg/C/+150/spl deg/C air-to-air thermal cycling condition.  相似文献   

9.
无铅电子钎料合金蠕变性能研究   总被引:7,自引:0,他引:7  
设计制作了一种简单可靠的弯折蠕变测量装置,比较了两种无铅电子钎料合金Sn-9Zn和Sn-3.5Cu-0.7Ag与传统电子钎料合金Sn-40Pb的常温蠕变性能,以及冷却条件对其蠕变强度的影响。结果表明:两种无铅钎料的抗蠕变性能大大优于传统锡铅钎料;Sn-3.5Ag-0.7Cu合金的抗蠕变性能优于Sn-9Zn合金;冷却速率对Sn-9Zn合金和Sn-3.5Ag-0.7Cu合金组织的影响类似,然而对蠕变强度的影响却相反:水冷使两种合金的组织相对于空冷都明显细化,Sn-9Zn合金的蠕变强度因之降低,而Sn-3.5Ag-0.7Cu合金的蠕变强度却因之提高。对可能产生的原因进行了讨论。  相似文献   

10.
In a previous study, a lead-free solder, Sn-6Bi-2Ag-0.5Cu, was developed by mechanical alloying. The alloy shows great potential as a lead-free solder system. In the present work, the microstructural evolution during thermal shock and aging was examined. In the as-soldered joints small bismuth (1 μm to 2 μm) and Ag3Sn (1 μm) particles were finely dispersed in a nearly pure tin matrix with a small amount of η-Cu6Sn5 phase in the bulk of solder. During thermal shock and aging microstructural evolution occurred with Cu-Sn intermetallic compound (IMC) layer growth at interface, bismuth phase coarsening and Ag3Sn phase coarsening. The microstructure of the solder appeared to be stable at high temperature. The shear strength of the present solder joint is higher than that of Sn-37Pb and Sn-3.5Ag solders. Shear failure occurred Cu-Sn IMC layer-solder interface and in the bulk of solder.  相似文献   

11.
An investigation of Sn pest in pure Sn and Sn-based solders   总被引:1,自引:0,他引:1  
Five solders Sn-0.7Cu, Sn-3.4Ag-0.8Cu, Sn-3.5Ag, Sn-36Pb-2Ag, and pure Sn, and two mobile phone boards were tested at low temperatures for tin pest. The samples were stored at −196 °C for 50 h, −40 °C for 4 years, and finally −17 °C for 1.5 years. Tin pest was observed in pure tin but not in any of the solder alloys or the boards tested. It is suggested that the mechanical properties of tin-based solders play a key role in tin pest formation. Any factor that strengthens the materials can increase the resistance to tin pest. Influential factors such as solder composition, test temperature, and types of alloys are discussed.  相似文献   

12.
The early interfacial reaction in the Sn-3.5Ag/Cu soldering system and the system’s premelting behavior were found and characterized by differential scanning calorimetry incorporated into the reflow process. The results show that the early interfacial reaction occurs by way of melting and wetting of the solder layer adjacent to the Cu substrate at a temperature nearly 4°C below the actual melting point of Sn-3.5Ag solder due to solid-state diffusion of Cu atoms into the Sn-3.5Ag binary solder. Consequently, the early interfacial reaction brings about formation of Cu-Sn intermetallic compounds (IMCs) at a temperature below the melting point of Sn-3.5Ag, and a prolonged early interfacial reaction can lead to change of the Cu-Sn IMC morphology from planar-like to scallop-like and promote excessive growth of IMCs at the interface.  相似文献   

13.
为了探究银含量对无铅焊点在随机振动条件下的可靠性的影响,对Sn-3.0Ag-0.5Cu、Sn-1.0Ag-0.5Cu和Sn-0.3Ag-0.7Cu三种不同Ag含量材料的焊点做窄带范围内的随机振动疲劳实验,并对失效焊点进行分析。结果表明:三种材料焊点的失效位置基本都在靠近PCB侧,最外围焊点最容易失效,失效模式均为脆性断裂,并且随着Ag含量的降低,金属间化合物的厚度逐渐减小,焊点的疲劳寿命逐渐延长。  相似文献   

14.
Developing a lead-free solder alloy Sn-Bi-Ag-Cu by mechanical alloying   总被引:1,自引:0,他引:1  
A new lead free alloy, Sn-6Bi-2Ag-0.5Cu, has been developed by mechanical alloying and has great potential as a lead-free solder system. Initial trials on the manufacture of solder joints with this alloy revealed that a high quality bond with copper could be formed. Its melting range of 193.87°C to 209.88°C is slightly higher than that of eutectic tin-lead solder. Examination of the microstructure of the as-soldered joints revealed that it mainly consists of small bismuth (1 μm to 2 μm) and Ag3Sn (1 μm) particles finely dispersed in a nearly pure tin matrix with a small amount of η-Cu6Sn5 particles. The Cu-Sn intermetallic compound (IMC) layer formed at solder-copper interface is the η-Cu6Sn5 phase with grain size of 2 μm. The shear strength of the solder joint is higher than that of Sn-37Pb or Sn-3.5Ag. Under shear loading, fracture occurred at IMC layer-solder interface as well as in the bulk of solder.  相似文献   

15.
The near-eutectic Sn-3.5 wt.% Ag-0.7 wt.% Cu (Sn-3.5Ag-0.7Cu) alloy was doped with rare earth (RE) elements of primarily Ce and La of 0.05–0.25 wt.% to form Sn-3.5Ag-0.7Cu-xRE solder alloys. The aim of this research was to investigate the effect of the addition of RE elements on the microstructure and solderability of this alloy. Sn-3.5Ag-0.7Cu-xRE solders were soldered on copper coupons. The thickness of the intermetallic layer (IML) formed between the solder and Cu substrate just after soldering, as well as after thermal aging at 170°C up to 1000 h, was investigated. It was found that, due to the addition of the RE elements, the size of the Sn grains was reduced. In particular, the addition of 0.1wt.%RE to the Sn-3.5Ag-0.7Cu solder improved the wetting behavior. Besides, the IML growth during thermal aging was inhibited.  相似文献   

16.
Sn-Ag-eutectic-based solders are replacing Sn-Pb eutectic solders in the electronics industry. The current paper extends the recently developed approach based on phase transformation theory, micromechanics, and fracture mechanics to treat fatigue crack nucleation and propagation for steels and alloys to predict fatigue crack propagation in solder alloys. To verify the proposed method, fatigue experiments were conducted on Sn-3.5Ag solder alloys. Finite element analysis is performed to predict the stress intensity factor range ΔK and the required energy U to increase the crack by a unit area. Unified creep-plasticity theory and a cohesive zone model are incorporated to predict the creep and hysteresis effects on fatigue crack propagation in solder and the interfacial behavior between the solder alloy and the intermetallic layer, respectively. With U determined numerically, the predicted fatigue crack propagation rate using phase transformation theory is compared with experimental data for Sn-3.5Ag and Sn-37Pb eutectic solders. Reasonable agreement between theoretical predictions and experimental results is obtained.  相似文献   

17.
The shear strength behavior and microstructural effects after aging for 100 h and 1,000 h at 150°C are reported for near-eutectic Sn-Ag-Cu (SAC) solder joints (joining to Cu) made from Sn-3.5Ag (wt.%) and a set of SAC alloys (including Co- and Fe-modified SAC alloys). All joints in the as-soldered and 100-h aged condition experienced shear failure in a ductile manner by either uniform shear of the solder matrix (in the strongest solders) or by a more localized shear of the solder matrix adjacent to the Cu6Sn5 interfacial layer, consistent with other observations. After 1,000 h of aging, a level of embrittlement of the Cu3Sn/Cu interface can be detected in some solder joints made with all of the SAC alloys and with Sn-3.5Ag, which can lead to partial debonding during shear testing. However, only ductile failure was observed in all solder joints made from the Co- and Fe-modified SAC alloys after aging for 1,000 h. Thus, the strategy of modifying a strong (high Cu content) SAC solder alloy with a substitutional alloy addition for Cu seems to be effective for producing a solder joint that retains both strength and ductility for extended isothermal aging at high temperatures.  相似文献   

18.
Soldering with the lead-free tin-base alloys requires substantially higher temperatures (∼235–250°C) than those (213–223°C) required for the current tin-lead solders, and the rates for intermetallic compound (IMC) growth and substrate dissolution are known to be significantly greater for these alloys. In this study, the IMC growth kinetics for Sn-3.7Ag, Sn-0.7Cu, and Sn-3.8Ag-0.7Cu solders on Cu substrates and for Sn-3.8Ag-0.7Cu solder with three different substrates (Cu, Ni, and Fe-42Ni) are investigated. For all three solders on Cu, a thick scalloped layer of η phase (Cu6Sn5) and a thin layer of ε phase (Cu3Sn) were observed to form, with the growth of the layers being fastest for the Sn-3.8Ag-0.7Cu alloy and slowest for the Sn-3.7Ag alloy. For the Sn-3.8Ag-0.7Cu solder on Ni, only a relatively uniform thick layer of η phase (Cu,Ni)6Sn5 growing faster than that on the Cu substrate was found to form. IMC growth in both cases appears to be controlled by grain-boundary diffusion through the IMC layer. For the Fe-42Ni substrate with the Sn-3.8Ag-0.7Cu, only a very thin layer of (Fe,Ni)Sn2 was observed to develop.  相似文献   

19.
This study included a comparison of the baseline Sn-3.5Ag eutectic to one near-eutectic ternary alloy, Sn-3.6 Ag-1.0Cu and two quaternary alloys, Sn-3.6Ag-1.0Cu-0.15Co and Sn-3.6Ag-1.0 Cu-0.45 Co, to increase understanding of the beneficial effects of Co on Sn-Ag-Cu solder joints cooled at 1–3 C/sec, typical of reflow practice. The results indicated that joint microstructure refinement is due to Co-enhanced nucleation of the Cu6Sn5 phase in the solder matrix, as suggested by Auger elemental mapping and calorimetric measurements. The Co also reduced intermetallic interface faceting and improved the ability of the solder joint samples to maintain their shear strength after aging for 72 hr at 150 C. The baseline Sn-3.5Ag joints exhibited significantly reduced strength and coarser microstructures.  相似文献   

20.
The mechanical and electrical properties of several Pb-free solder joints have been investigated including the interfacial reactions, namely, the thickness and morphology of the intermetallic layers, which are correlated with the shear strength of the solder joint as well as its electrical resistance. A model joint was made by joining two “L-shaped” copper coupons with three Pb-free solders, Sn-3.5Ag (SA), Sn-3.8Ag-0.7Cu (SAC), and Sn-3.5Ag-3Bi (SAB) (all in wt.%), and combined with two surface finishes, Cu and Ni(P)/Au. The thickness and morphology of the intermetallic compounds (IMCs) formed at the interface were affected by solder composition, solder volume, and surface finish. The mechanical and electrical properties of Pb-free solder joints were evaluated and correlated with their interfacial reactions. The microstructure of the solder joints was also investigated to understand the electrical and mechanical characteristics of the Pb-free solder joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号