首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Parenterally administered domoic acid, a structural analog of the excitatory amino acids glutamic acid and kainic acid, has specific effects on brain histology in rats, as measured using different anatomic markers. Domoic acid-induced convulsions affects limbic structures such as hippocampus and entorhinal cortex, and different anatomic markers can detect these neurotoxic effects to varying degrees. Here we report effects of domoic acid administration on quantitative indicators of brain metabolism and gliosis. Domoic acid, 2.25 mg/kg i.p., caused stereotyped behavior and convulsions in approximately 60% of rats which received it. Six to eight days after domoic acid or vehicle administration, the animals were processed to measure regional brain incorporation of the long-chain fatty acids [1-(14)C]arachidonic acid ([14C]AA) and [9,10-(3)H]palmitic acid ([3H]PA), or regional cerebral glucose utilization (rCMRglc) using 2-[1-(14)C]deoxy-D-glucose, by quantitative autoradiography. Others rats were processed to measure brain glial fibrillary acidic protein (GFAP) by enzyme-linked immunosorbent assay. Domoic acid increased GFAP in the anterior portion of cerebral cortex, the caudate putamen and thalamus compared with vehicle. However, in rats that convulsed after domoic acid GFAP was significantly increased throughout the cerebral cortex, as well as in the hippocampus, septum, caudate putamen, and thalamus. Domoic acid, in the absence of convulsions, decreased relative [14C]AA incorporation in the claustrum and pyramidal cell layer of the hippocampus compared with vehicle-injected controls. In the presence of convulsions, relative [14C]AA incorporation was decreased in hippocampus regions CA1 and CA2. Uptake of [3H]PA into brain was unaffected. Relative rCMRglc decreased in entorhinal cortex following domoic acid administration with or without convulsions. These results suggest that acute domoic acid exposure affects discrete brain circuits by inducing convulsions, and that domoic acid-induced convulsions cause chronic effects on brain function that are reflected in altered fatty acid metabolism and gliosis.  相似文献   

2.
Extracellular ATP and benzoyl-ATP (Bz-ATP) increased the release of [3H]arachidonic acid ([3H]AA) from prelabeled rat submandibular gland (RSMG) ductal cells respectively two- and threefold. Both agonists also increased the release of [3H]AA from acini but at a lower level (+50% and +100% respectively). Carbachol had no significant effect on either cellular population. In ductal cells phorbol myristate acetate, an activator of protein kinase C, slightly increased the basal release of [3H]AA but did not affect the release of [3H]AA in response to ATP. Staurosporine, an inhibitor of protein kinases, inhibited the response to the purines. The removal of calcium from the extracellular medium decreased the response to ATP and Bz-ATP. Only barium could partly substitute for calcium to restore the purinergic response. Zinc inhibited the release of [3H]AA. Permeabilization of the cells with streptolysin O (SLO) activated the calcium-independent phospholipase A2 activity (iPLA2). The iPLA2, not the calcium-dependent PLA2 (cPLA2), released [3H]oleic acid ([3H]OA) from RSMG ductal cells. It is concluded that RSMG ducts have a higher PLA2 activity when compared to acini. This activity is accounted for by iPLA2 and cPLA2. Both enzymes are activated by P2X agonists by a staurosporine-sensitive mechanism. Cells permeabilized with SLO or membranes from Escherichia coli as a substrate are not good models to study the regulation of these enzymes. In intact RSMG ductal cells the two activities can be distinguished by rather specific inhibitors, by different ionic conditions and also by the fatty acid used to label the cells.  相似文献   

3.
The effects of buprenorphine (BNP, 10-200 micrograms/kg, i.v.) and pentazocine (PTZ, 2.5-10 mg/kg, i.v.) on the regional cerebral metabolic rate for glucose (rCMRglc) were analyzed in nine anatomically discrete areas of the conscious rat brain by the simultaneous use of [14C]2-deoxyglucose, the glucose analogue that can be phosphorylated in the brain, and [3H]3-O-methylglucose, a nonmetabolizable glucose analogue. Originally, this method was developed by Gjedde and Diemer in the rat and in humans. The rCMRglc was significantly decreased by BNP (100 or 200 micrograms/kg) in most of the brain regions investigated, except the cerebellum. In contrast, PTZ (10 mg/kg) significantly increased rCMRglc in the cerebral cortex and medulla. In the cerebral cortex and medulla, the direction of the effect on rCMRglc was opposite for BNP (22% decrease at the dose of 200 micrograms/kg) and PTZ (22% increase at the dose of 10 mg/kg). These findings strongly suggest that the discrepancies between the marked effects of BNP (a partial mu agonist and kappa antagonist) and PTZ (a mu antagonist and kappa agonist) on rCMRglc reflect the selectivity of agonist action at the different types of opioid receptors, mu and kappa receptors, in the rat brain.  相似文献   

4.
Ethanol disrupts signal transduction mediated by a variety of G-protein coupled receptors. We examined the effects of ethanol on arachidonic acid release mediated by muscarinic acetylcholine receptors. Chinese hamster ovary (CHO) cells transfected with the different subtypes of human muscarinic receptors (M1 to M5) were incubated with [3H]arachidonic acid ([3H]AA) for 18 hr, washed, and exposed to the cholinergic agonist carbamylcholine for 15 min. Carbamylcholine induced [3H]AA release from CHO cells expressing M1, M3, or M5, but not M2 or M4, muscarinic receptors. Dose response curves revealed that carbamylcholine stimulated [3H]AA release by up to 12-fold with an ECo of approximately 0.4 microM; maximal responses were obtained with 10 microM carbamylcholine. Exposure of M1-, M3-, or M5-expressing cells to ethanol for 5 min before stimulating with carbamylcholine reduced [3H]AA release by 40 to 65%; 50% of the maximal inhibition was obtained with an ethanol concentration of 30 to 50 mM. Ethanol did not affect basal [3H]AA release measured in the absence of carbamylcholine. Dose response curves suggest that ethanol acts as a noncompetitive inhibitor of muscarinic receptor-induced [3H]AA release insofar as maximal [3H]AA release was depressed in the presence of ethanol with no apparent change in the EC50 for stimulation by carbamylcholine. Exposure of CHO cells to 38 mM ethanol for 48 hr increased [3H]AA release induced by carbamylcholine without affecting basal [3H]AA release or altering the EC50 for carbamylcholine. These results indicate that ethanol acutely inhibits muscarinic receptor signaling through the arachidonic acid pathway in a noncompetitive manner, but chronically enhances muscarinic signaling through the same pathway.  相似文献   

5.
Stimulation of rat thymocytes by concanavalin A (Con A) results in a very early increase of the cellular level of phosphatidic acid (PA), while that of diacylglycerol (DAG) was not affected. As the biological activity of PA is very likely to be determined by its molecular species composition, the present study aims to investigate the pathways leading to the production of PA in Con A-stimulated rat thymocytes. Prelabeling the cells with [3H]arachidonic acid, [3H]myristic acid, [3H]choline, or [14C]lysophosphatidylcholine allowed us to determine that PA is formed by both phosphoinositide (PIs) and phosphatidylcholine (PC) hydrolysis. We then investigated whether PA derived from PC was formed by phospholipase C (PLC) or phospholipase D (PLD) hydrolysis. In the presence of 1-butanol, the production of phosphatidylbutanol was only observed in tetradecanoyl phorbol acetate (TPA)-stimulated cells. The use of a specific PC phospholipase C inhibitor resulted in a decrease of Con A-stimulated PA production in cells labeled with [3H]myristate. When cells were labeled with [3H]choline, only TPA stimulation induced a release of labeled choline. All together, these experiments suggest that PA is originated from two phospholipid sources, predominantly PI via PLC hydrolysis and to a lesser extent PC, by PLC hydrolysis also. Molecular species analyses by reverse phase HPLC are in agreement with this hypothesis, as diacyl-GP molecular species composition is similar to that of diacyl-GPC and DAG in resting cells, but resembles that of diacyl-GPI in Con A-treated cells. Thus, in stimulated cells, the amount of 18:0/20:4 species doubled while those of saturated and monounsaturated species decreased.  相似文献   

6.
[14C]-labelled palmitic acid (PA), oleic acid (OA), linoleic (LA) and arachidonic (AA) acids were transferred from macrophages (M phi) to lymphocytes (LY) when equal numbers of the two cell types were co-cultured. The relative degree and amounts of the fatty acids transferred from M phi to LY are as follow: AA (368.57 +/- 21.62) = OA (274.52 +/- 15.41) > LA (42.11 +/- 8.31) = PA (36.53 +/- 2.45). The transfer units are nmol/10(10) M phi/10(10) LY and the values are mean +/- SEM for 7 experiments. The [14C]-radioactivity transferred was mainly directed to the phospholipid fraction of the lymphocytes (85% by PA, 86% by LA, 83% by OA and 79% by AA). In the same order as above, phosphatidylcholine was the phospholipid moiety most heavily labelled (82% by PA, 71% by LA, 66% by OA and 47% by AA). The amount of [14C]-radioactivity transferred to stimulated lymphocytes of thioglycollate treated animals remained unchanged for LA, PA and AA but reduced for OA (71%). The significance of these observations for the immune functions of the cells and resolution of the question of whether some of the [14C]-isotope transfer involves a component of exchange or is unequivocally net fatty acid mass transfer are still being investigated.  相似文献   

7.
In the present work, the effects of GnRH on the translation (by [14C]leucine incorporation; [14C]Leu-LH) and the glycosylation of LH by rat pituitary cells in primary culture were established. The use of specific markers as radioactive precursors made it possible to discriminate the action of the neurohormone on proximal glycosylation (by[3H]mannose incorporation; [3H]Man-LH) as well as distal glycosylation (by [3H]galactose incorporation; [3H]Gal-LH) in the course of synthesis and release of LH. Pituitary cells from ovariectomized adult rats were incubated for different periods between 0 and 5 h in medium containing [14C]Leu plus [3H]Man or [14C]Leu plus [3H]Gal with or without 10 nM GnRH. GnRH increased synthesis and release of newly synthesized LH. The magnitude of the stimulatory effect on the kinetics of [14C]Leu (slope = 63.58; 158% of control) and [3H]Man (slope = 75.15; 161%) incorporation to LH was similar. The action of the neurohormone appears to be exerted on translation, the increased [3H]Man incorporation being a secondary phenomenon arising from the greater amount of available polypeptide chains as acceptors of the polymannose core. However, a direct effect of GnRH on proximal glycosylation cannot be excluded. GnRH also stimulated the kinetics of release of [14C]Leu-LH (slope = 6.14; 236% of control) and [3H]Man-LH (slope = 8.06; 191%). Comparatively, the effect of GnRH on [3H]Gal-LH was detected earlier than that on LH labeled with the other precursors; increases in rates of production (slope = 71.57; 278% of control) and release (slope = 32.08; 494%) were higher than those in [14C]Leu- and [3H]Man-LH kinetics, indicating that GnRH acts specifically on this distal step of LH glycosylation. GnRH enhanced the relative terminal glycosylation ([3H]Gal/[14C]Leu ratio) of total and release LH without modifying the relative proximal glycosylation ([3H]Man/[14C]Leu ration) of the hormone. We conclude that GnRH can induce not only changes in the quantity (greater number of molecules) but also in the quality (molecules more glycosylated) of the secreted LH by acting directly at translation and distal glycosylation level.  相似文献   

8.
1. In this study, the underlying mechanism of stimulation of respiratory burst by kazinol B, a natural isoprenylated flavan, in rat neutrophils in vitro was investigated. 2. Kazinol B concentration-dependently stimulated the superoxide anion (O2*-) generation, with a lag but transient activation profile, in neutrophils but not in a cell-free system. The maximum response (13.2+/-1.4 nmol O2*- 10 min(-1) per 10(6) cells) was observed at 10 microM kazinol B. 3. Pretreatment of neutrophils with phorbol 12-myristate 13-acetate (PMA) or formylmethionyl-leucyl-phenylalanine (fMLP) significantly enhanced the O2*- generation following the subsequent stimulation of cells with kazinol B. 4. Cells pretreated with EGTA or a protein kinase inhibitor staurosporine effectively attenuated the kazinol B-induced O2*- generation. However, a p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 and a phosphoinositide 3-kinase (PI3K) inhibitor wortmannin had no effect on the kazinol B-induced response. 5. Kazinol B significantly stimulated [Ca2+]i elevation in neutrophils, with a lag and slow rate of rise activation profile, and this response was attenuated by a phospholipase C (PLC) inhibitor U73122. Kazinol B also stimulated the inositol bis- and trisphosphate (IP2 and IP3) formation with a 1 min lag time. 6. The membrane-associated PKC-alpha and PKC-theta but not PKC-iota were increased following the stimulation of neutrophils with kazinol B. It was more rapid and sensitive in the activation of PKC-theta than PKC-alpha by kazinol B. Kazinol B partially inhibited the [3H]phorbol 12,13-dibutyrate ([3H]PDB) binding to the neutrophil cytosolic PKC. 7. Neither the cellular mass of phosphatidic acid (PA) and phosphatidylethanol (PEt), in the presence of ethanol, nor the protein tyrosine phosphorylation were stimulated by kazinol B. In addition, the kazinol B-induced O2*- generation remained relatively unchanged in cells pretreated with ethanol or a tyrosine kinase inhibitor genistein. 8. Collectively, these results indicate that the stimulation of the respiratory burst by kazinol B is probably mediated by the synergism of PKC activation and [Ca2+]i elevation in rat neutrophils.  相似文献   

9.
In primate striate cortex, geniculocortical afferents in layer IVc terminate in parallel stripes called ocular dominance columns. We propose that this segregation of ocular inputs generates a related but distinct columnar system of monocular core zones alternating with binocular border strips. Evidence for this functional parcellation was obtained by comparing the effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase (CO) activity in eight macaques. Enucleation produced a high-contrast pattern of dark and light columns in layer IVc, corresponding precisely to the ocular dominance columns, whereas eyelid suture produced a low-contrast pattern of thin dark columns alternating with wide pale columns. [3H]Proline eye injection showed that the thin dark columns corresponded to the core zones of the open eye's ocular dominance columns. The wide pale columns resulted from loss of CO activity in the sutured eye's core zones and within both eyes' border strips. Loss of CO activity within both eyes' border strips suggested that these regions are binocular. To confirm our findings, we compared different CO patterns in the same cortex by making retinal laser lesions in four animals. They produced a CO pattern tantamount to "focal" enucleation, although contrast was low when laser damage was confined to the outer retina. CO levels in cortical scotomas remained severely depressed for months after retinal lesions, even when the other eye was enucleated. This observation provided little anatomical support for the notion of topographic plasticity after visual deafferentation. In a single human subject with macular degeneration, CO revealed a low-contrast pattern of ocular dominance columns, resembling the pattern in monkeys with laser-induced photoreceptor damage.  相似文献   

10.
Following pulse labeling with [3H]arachidonic acid ([3H]AA), its incorporation pattern in brain reflects regional changes in neurotransmitter signal transduction using phospholipase A2, that is, functional activity. In a rat model of Parkinson's disease, unilateral 6-hydroxydopamine lesion in the substantia nigra, [3H]AA acid incorporation from blood was increased in cerebral cortex, caudate putamen, globus pallidus, entopeduncular nucleus, subthalamic nucleus and substantia nigra pars reticulata ipsilateral to the lesion. This increased [3H]AA incorporation likely reflects disinhibition of basal ganglia and cortical circuits secondary to absent inhibitory nigrostriatal dopaminergic input.  相似文献   

11.
The effects of long-term (7, 14 or 21 days) administration of the 5-HT1A receptor agonist alnespirone [5 mg/(kg day), i.p.] on the binding characteristics of 5-HT1A, 5-HT2A and 5-HT3 receptors, and the functional status of 5-HT1A autoreceptors were assessed using biochemical and electrophysiological approaches in rats. Whatever the treatment duration, the specific binding of [3H]8 hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT), [3H]trans,4-[(3Z)3-(2-dimethylaminoethyl) oxyimino-3(2-fluorophenyl) propen-1-yl] phenol hemifumarate ([3H]SR 46349B), and [3H]S-zacopride to 5-HT1A, 5-HT2A and 5-HT3 receptors, respectively, were unaltered in all the brain areas examined. In contrast, in vitro electrophysiological recordings performed 24 h after the last injection of alnespirone showed that the potency of the 5-HT1A receptor agonist, 8-OH-DPAT, to depress the firing of serotoninergic neurons in the dorsal raphe nucleus, was significantly reduced after a 21-day treatment with alnespirone. However, no changes were noted after a 7-day or 14-day treatment. These data indicate that desensitization of somatodendritic 5-HT1A autoreceptors is a selective but slowly developing adaptive phenomenon in response to their chronic stimulation in rats.  相似文献   

12.
Functional roles of adrenoceptors in parietal cells were pharmacologically investigated using isolated canine parietal cells. In the crude membranes obtained from preparations highly purified in parietal cells (> 95% of purity), the specific binding of [3H]dihydroalprenolol (DHA) was observed with a Kd value of 2.9 nM and Bmax of 234 fmol/mg protein, while the specific binding of [3H]prazosin and [3H]rauwolscine were not attained. Propranolol concentration-dependently reduced the specific binding of [3H]dihydroalprenolol with a Ki value of 2.6 nM. Isoproterenol concentration-dependently stimulated [14C]aminopyrine accumulation in preparations enriched in parietal cells (about 70% purity) with the maximum at 10 nM. Isoproterenol increased the content of cyclic AMP in preparations enriched in parietal cells (70%) with the maximum at 100 nM. The isoproterenol-induced stimulatory effect of [14C]aminopyrine accumulation in preparations enriched in parietal cells (70%) was completely abolished by 1 microM propranolol but not by 1 microM phentolamine. In the presence of 1 microM propranolol, 100 microM noradrenaline did not affect carbachol- and histamine-induced [14C]aminopyrine accumulation in preparations enriched in parietal cells (70%). The present study suggests that stimulation of beta-adrenoceptors located on canine parietal cells evokes acid production in a cyclic-AMP-dependent manner. Furthermore, a possibility arises that canine parietal cells are not the site of action of alpha-adrenoceptors in mediating inhibition of gastric acid secretion.  相似文献   

13.
Intraventricular administration of carbachol can induce phase shifts in wheel-running activity in rodents, which depend on circadian phase and are mediated via muscarinic cholinergic receptors in Syrian hamsters. We studied the circadian variation in binding of [3H]-N-methylscopolamine ([3H]NMS), a hydrophilic muscarinic receptor antagonist, in micropunches obtained from the anterior hypothalamus and occipital cortex of Syrian hamsters housed in a 14:10 light:dark cycle. Binding sites were characterized on cells contained within 1 mm punches (obtained from slices 300 microm thick), using a method to selectively detect cell surface (functional) receptors. Atropine sulphate was used to determine nonspecific binding. Cortex showed a significant daily rhythm in [3H]NMS binding with a peak occurring late in the light phase and a trough at lights on, while the hypothalamus showed no detectable rhythm. Following suprachiasmatic nucleus (SCN) ablation or maintenance in constant darkness, the rhythm in the cortex was abolished. These findings suggest that photic information conveyed via the SCN is responsible for the receptor binding rhythm in the cortex. Autoradiographic studies ([3H]NMS; 2 nM, 3 weeks exposure) clearly revealed both M1 and M2 subtypes of muscarinic receptors in the region of the SCN and the visual cortex.  相似文献   

14.
Cholera toxin (CT) increases intestinal secretion of water and electrolytes and modulates the mucosal immune response by stimulating cellular synthesis of arachidonic acid (AA) metabolites (e.g., prostaglandin E2), as well as the intracellular second messenger cyclic AMP (cAMP). While much is known about the mechanism of CT stimulation of adenylate cyclase, the toxin's activation of phospholipase A2, which results in increased hydrolysis of AA from membrane phospholipids, is not well understood. To determine whether CT activation of AA metabolism requires CT's known enzymatic activity (i.e., ADP-ribosylation of GSalpha), we used native CT and a mutant CT protein (CT-2*) lacking ADP-ribose transferase activity in combination with S49 wild-type (WT) and S49 cyc- murine Theta (Th)1.2-positive lymphoma cells deficient in GSalpha. The experimental results showed that native CT stimulated the release of [3H[AA from S49 cyc- cells at a level similar to that for S49 WT cells, indicating that GSalpha is not essential for this process. Further, levels of cAMP in the CT-treated cyc- cells remained the same as those in the untreated control cells. The ADP-ribosyltransferase-deficient CT-2* protein, which was incapable of increasing synthesis of cAMP, displayed about the same capacity as CT to evoke the release of [3H]AA metabolites from both S49 WT and cyc- cells. We concluded that stimulation of arachidonate metabolism in S49 murine lymphoma cells by native CT does not require enzymatically functional CT, capable of catalyzing the ADP-ribosylation reaction. These results demonstrated for the first time that stimulation of adenylate cyclase by CT and stimulation of AA metabolism by CT are not necessarily coregulated. In addition, the B subunits purified from native CT and CT-2* both simulated the release of [3H]AA from S49 cyc- cells and murine monocyte/macrophage cells (RAW 264.7), suggesting a receptor-mediated cell activation process of potential importance in enhancing immune responses to vaccine components.  相似文献   

15.
We have investigated the possible interaction (cross talk) between the phospholipase A2 (PLA2) and inositol 1,4,5-trisphosphate/protein kinase C (PKC) signaling pathways in rat lactotroph-enriched cell cultures. Melittin, a bee venom peptide, stimulated release of [3H]arachidonic acid ([3H]AA) from [3H]AA-labeled enriched lactotrophs in a dose-dependent manner. Moreover, melittin and exogenous AA induced a redistribution of PKC catalytic activity and PKC alpha and beta immunoreactivity from the soluble to the particulate fraction in resting and substance P (SP)-stimulated cells. Melittin had no effect on phospholipase C (PLC) activity. Pretreatment of cell cultures with the PLA2 inhibitors quinacrine and aristolochic acid resulted in a dose-dependent inhibition of melittin-stimulated PKC isozyme translocation as did the inhibitor of lipoxygenase, nordihydroguaiaretic acid, whereas the cyclooxygenase inhibitor indomethacin had no effect. SP and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) dose-dependently increased levels of [3H]AA released from cells. Pretreatment of cell cultures with quinacrine reduced the effect of SP on [3H]AA formation. After long-term treatment (24 h) of cells with TPA, the effect of TPA on [3H]AA production was not different from control, whereas SP still displayed [3H]AA-releasing abilities although not at full scale. Pretreatment of cells with thapsigargin, U 73122, methoxyverapamil, and RHC 80267, an inhibitor of diacylglycerol lipase, all resulted in reduced SP-stimulated [3H]AA liberation. Treatment of cell cultures with pertussis toxin (PTX) reduced the release of [3H]AA induced by SP, whereas PTX had no effect on SP-stimulated generation of 3H-inositol phosphates. On the basis of these results, it is concluded that (1) the PLA2 pathways interfere with the phosphoinositide-PLC signaling system at the level of PKC isozymes alpha and beta, the product responsible for this interaction being either AA or a metabolite produced by the action of lipoxygenase; (2) SP and TPA are able to activate the PLA2 pathway at a level at or beyond PLA2, and this effect is mediated, in part, through PKC alpha and beta species and (for SP) intracellular Ca2+ recruited from internal stores as well as from external sources; and (3) SP also activates PLA2 through a PTX-sensitive pathway distinct from the one coupled to phosphoinositide-PLC, which is PTX insensitive.  相似文献   

16.
Previous studies have shown that a subpopulation of the catecholamine-degrading enzymes monoamine oxidase (MAO) A and B holds a previously unknown regulatory site, the I2-imidazoline binding site (I2BS). In the present work, we characterized the isoforms of monoamine oxidases expressed in the rabbit renal proximal tubule, defined their relationship with I2BS, and investigated the ability of I2BS ligands to inhibit enzyme activity in intact cells. Two findings indicate that MAO-B is the predominant isoform expressed in the renal proximal tubule cells: 1) Western blot performed with an anti-MAO-A/MAO-B polyclonal antiserum revealed a single 55-kDa band corresponding to MAO-B; 2) enzyme assays showed an elevated MAO-B activity ([14C]beta-phenylethylamine oxidation: Vmax = 1.31 +/- 0.41 nmol/min/mg protein), whereas MAO-A activity was only detectable ([14C]5-HT oxidation: Vmax = 80.3 +/- 19 pmol/min/mg protein). Photoaffinity labeling with the I2BS ligand [125I]2-(3-azido-4-iodophenoxy)-methylimidazoline revealed a single 55-kDa band, which indicates that MAO-B of the renal proximal tubule cells holds the I2 imidazoline binding site. [3H]Idazoxan binding studies and enzyme assays showed that, in intact cells, I2BS ligands bind to and inhibit MAO-B. Indeed, the increase in the accessibility of intracellular compartment by cell permeabilization did not enhance [3H]idazoxan binding, which indicates that, in intact cells, intracellular I2BS are fully occupied by imidazoline ligands. In addition, enzyme assays showed that incubation of proximal tubule cells with imidazoline ligands leads to a complete, dose-dependent inhibition of MAO activity. These data show the predominant expression of MAO-B in rabbit renal proximal tubule and its regulation by imidazoline ligands in intact cells.  相似文献   

17.
Transfer of 3H from D-gluconic acid, specifically labelled with 3H at C-2 or C-3 and 14C at C-1, C-2, or C-3, 4, to L(+)-tartaric acid was examined in leaves and berries of Vitis labrusca cv Delaware and in leaves of Parthenocissus quinquefolia. 3H located at C-3 of D-gluconic acid was highly conserved in this transfer, yielding a 3H/14C ratio between 3.3 and 14 in the light and between 11 and 22 in the dark. These experiments strongly suggest that a portion of the 3H present in L(+)-tartaric acid may have been transferred from D-gluconic acid to L(+)-tartaric acid, possibly via NADP[3H] through a redox process involving reduction of L-xylo-2-hexulosonate (2-keto-L-idonate). Both [3H]-tartaric acid and [14C]tartaric acid synthesized in grape leaves from D-[3-3H, 2-14C]gluconic acid, or [3-3H, 3,4-14C]gluconic acid were characterized as L(+)-chiral form exclusively, the naturally occurring from of tartaric acid.  相似文献   

18.
We examined cytochrome oxidase (CO) activity in striate cortex of four macaque monkeys after monocular enucleation at ages 1, 1, 5, and 12 weeks. These animal experiments were performed to guide our interpretation of CO patterns in occipital lobe specimens obtained from two children who died several years after monocular enucleation during infancy for tumor. In the macaques, the ocular dominance columns were labelled by injecting [3H]proline into the remaining eye. After enucleation at age 1 week, ocular dominance columns were eliminated in layer IVc(beta), resulting in a uniform pattern of autoradiographic label and CO staining. However, columns could still be seen in wet, unstained sections and with the Liesegang silver stain. Autoradiographs through layers IVc(alpha) and IVa showed residual, shrunken columns belonging to the missing eye, indicating that enucleation has less drastic effects in these layers. In the two human cases, enucleation at age 1 week also resulted in uniform CO staining in layer IVc. In the macaque after enucleation at age 5 weeks, ocular dominance columns belonging to the missing eye were severely narrowed, but still occupied 20% of layer IVc(beta). CO revealed wide, dark columns alternating with thin, pale columns in layer IVc(beta). The CO pattern and the columns labelled by autoradiography matched perfectly. After enucleation at age 12 weeks, only mild shrinkage of ocular dominance columns occurred. Enucleation at ages 1, 5, and 12 weeks did not alter the pattern of thin-pale-thick-pale stripes in V2. The main findings from this study were that (1) CO histochemistry accurately labels the boundaries of columns in layer IVc(beta) of macaque striate cortex after early monocular enucleation, making it a suitable technique for defining the critical period for plasticity of ocular dominance columns in human striate cortex; (2) enucleation causes more severe shrinkage of ocular dominance columns than eyelid suture; (3) early monocular enucleation obliterates ocular dominance columns in layer IVcbeta, but their pattern remains visible in wet sections and with the Liesegang stain; and (4) enucleation does not affect CO staining in V2.  相似文献   

19.
The Na+-dependent high-affinity choline uptake (HACU) transport and the [3H]hemicholinium-3 ([3H]HC-3) specific binding were measured on hippocampal synaptosomes of young (3-6 months) and old (22 months) Wistar rats. In vitro effects of 100-300 microM arachidonic acid (AA) and of 5% ethanol were tested under basal as well as stimulated (55 mM KCl) conditions. The influence of AA (an irreversible decrease of HACU and a reversible increase of [3H]HC-3 binding) was more marked under stimulated rather than basal conditions in brain tissue of young rats. The increased K+-depolarization effect on HACU and the decreased influence of AA on [3H]HC-3 binding were estimated in brain tissue of old compared to young rats. Results suggest the involvement of different pools of the high-affinity choline carrier and marked changes due to aging in the regulation of the HACU transport.  相似文献   

20.
We have compared the efflux of cholesterol from different cellular pools of human hepatoma cells HepG2 using intact cells or isolated membrane fractions. To label different pools, cells were incubated with either unesterified [14C]cholesterol that had been incorporated into high density lipoproteins ([14C]FC-HDL), low density lipoproteins ([14C]FC-LDL), or phosphatidylcholine liposomes ([14C]FC-PC), or with [14C]acetate. Cell fractionation revealed that labeling of cells with [14C]FC-PC resulted in the incorporation of [14C]cholesterol almost exclusively into the plasma membrane (PM), while incubation with [14C]FC-HDL resulted in the majority of [14C]cholesterol incorporation into the PM, but with a smaller component associated with lysosomes. Labeling with [14C]FC-LDL or [14C]acetate led to an accumulation of [14C]cholesterol predominantly in lysosomes or the endoplasmic reticulum (ER), respectively. When the kinetics of [14C]cholesterol efflux was analyzed after pulse-labeling of different cellular pools, half-times of cholesterol efflux from lysosomes and ER were significantly longer than that from PM. In another set of experiments, when both labeling and efflux times varied, efflux of [14C]cholesterol from the PM to human serum after 1.5 h pulse and chase incubations was double that from lysosomes and 8-fold that from ER. Extension of the incubation times from 1.5 to 3 h diminished the difference in cholesterol efflux from different membranes. Further incubation to 6 h almost abolished the different responses. Cell-free preparations of membranes, obtained from cells labeled with [14C]cholesterol, showed no differences in cholesterol efflux. No differences in the distribution of [14C]cholesterol released into serum among lipoprotein subfractions was observed. Pretreatment of the serum with Fab fragments of polyclonal rabbit anti-human apolipoprotein A-I antibodies reduced its ability to promote efflux of cholesterol from the ER by 77%, but had no effect on cholesterol efflux from the PM. Fab fragments of non-immune IgG had no effect on the efflux of both ER and PM cholesterol. We conclude that the availability of cellular cholesterol for efflux from HepG2 cells is strongly influenced by its subcellular location, and is regulated by apolipoprotein A-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号