首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
We introduce a new type of microscopy which is capable of investigating surface topography and electrical property of conductive and dielectric materials simultaneously on a nanometer scale. The microwave atomic force microscopy is a combination of the principles of the scanning probe microscope and the microwave-measurement technique. As a result, under the noncontact AFM working conditions, we successfully generated a microwave image of a 200-nm Au film coating on a glass wafer substrate with a spatial resolution of 120 nm and a measured voltage difference of 19.2 mV between the two materials.  相似文献   

2.
Components for high speed atomic force microscopy   总被引:2,自引:0,他引:2  
Many applications in materials science, life science and process control would benefit from atomic force microscopes (AFM) with higher scan speeds. To achieve this, the performance of many of the AFM components has to be increased. In this work, we focus on the cantilever sensor, the scanning unit and the data acquisition. We manufactured 10 microm wide cantilevers which combine high resonance frequencies with low spring constants (160-360 kHz with spring constants of 1-5 pN/nm). For the scanning unit, we developed a new scanner principle, based on stack piezos, which allows the construction of a scanner with 15 microm scan range while retaining high resonance frequencies (>10 kHz). To drive the AFM at high scan speeds and record the height and error signal, we implemented a fast Data Acquisition (DAQ) system based on a commercial DAQ card and a LabView user interface capable of recording 30 frames per second at 150 x 150 pixels.  相似文献   

3.
We have analyzed correlations between surface morphology and current sensing images obtained using a current sensing atomic force microscope (CSAFM) and the implication of surface conductivity derived from the current sensing images. We found that in cases where the diameter of a CSAFM probe tip is much smaller than the correlation length of the surface morphological features, the current detected using the probe should have little correlation with the surface features imaged by the same probe. If the sample thickness is much larger than the tip size, the surface conductivity distribution of a sample can be derived from a current sensing image using the Holm resistance relation, and the current probed using a CSAFM reflects the conductance variations in a layer on the surface with the thickness comparable to the probe diameter. However, if the thickness of a sample is comparable to or smaller than the tip diameter, CSAFM measures the conductance across the entire portion of the sample sandwiched between the tip and the electrode.  相似文献   

4.
Myoblast therapy relies on the integration of skeletal muscle stem cells into distinct muscular compartments for the prevention of clinical conditions such as heart failure, or bladder dysfunction. Understanding the fundamentals of myogenesis is hence crucial for the success of these potential medical therapies. In this report, we followed the rearrangement of the surface membrane structure and the actin cytoskeletal organization in C2C12 myoblasts at different stages of myogenesis using atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). AFM imaging of living myoblasts undergoing fusion unveiled that within minutes of making cell–cell contact, membrane tubules appear that unite the myoblasts and increase in girth as fusion proceeds. CLSM identified these membrane tubules as built on scaffolds of actin filaments that nucleate at points of contact between fusing myoblasts. In contrast, similarly behaving membrane tubules are absent during cytokinesis. The results from our study in combination with recent findings in literature further expand the understanding of the biochemical and membrane structural rearrangements involved in the two fundamental cellular processes of division and fusion.  相似文献   

5.
We present a remotely-controlled device for sample stretching, designed for use with atomic force microscopy (AFM) and providing electrical connection to the sample. Such a device enables nanoscale investigation of electrical properties of thin gold films deposited on polydimethylsiloxane (PDMS) substrate as a function of the elongation of the structure. Stretching and releasing is remotely controlled with use of a dc actuator. Moreover, the sample is stretched symmetrically, which gives an opportunity to perform AFM scans in the same site without a time-consuming finding procedure. Electrical connections to the sample are also provided, enabling Kelvin probe force microscopy (KPFM) investigations. Additionally, we present results of AFM imaging using the stretching stage.  相似文献   

6.
We propose a general procedure to determine the optimum imaging parameters (spring constant and oscillation amplitude) to obtain the optimum resolution in frequency modulation atomic force microscopy. We calculated the effective signal-to-noise ratio for various spring constants and oscillation amplitudes, based on the measurement of frequency shift and energy dissipation versus tip-sample distance curves, to find the optimum. We applied this procedure for imaging a lead phthalocyanine (PbPc) thin film on a MoS(2)(0001) substrate, and found that the optimum parameters were about 5 N/m and 20 nm, respectively. An improved signal-to-noise ratio was attained in a preliminary experiment using parameters which were close to the calculated optimum.  相似文献   

7.
Artefacts that affect contrast and arise from adhesion forces in atomic force microscopy images of aramid fibres (both fresh and plasma-treated) are investigated. It is demonstrated that these stem not only from variations in the chemical composition of the surface but also from certain topographical features (which may appear hidden or enhanced in the images), resulting in changes in the lateral forces that are detected by the cantilever and are comparable to the vertical forces. It is also shown that both types of contribution to the forces can be uncoupled to yield images free from these artefacts, thus allowing more accurate quantitative measurements. These artefactual effects are also generally applicable to many other materials.  相似文献   

8.
Intermodulation atomic force microscopy (IMAFM) is a dynamic mode of atomic force microscopy (AFM) with two-tone excitation. The oscillating AFM cantilever in close proximity to a surface experiences the nonlinear tip-sample force which mixes the drive tones and generates new frequency components in the cantilever response known as intermodulation products (IMPs). We present a procedure for extracting the phase at each IMP and demonstrate phase images made by recording this phase while scanning. Amplitude and phase images at intermodulation frequencies exhibit enhanced topographic and material contrast.  相似文献   

9.
Phase-contrast imaging in the tapping mode atomic force microscopy (AFM) is a powerful method in surface characterization. This method can provide fine details about rough surfaces, which are normally obscured in topographic imaging. To illustrate some of the capabilities of phase-contrast imaging, AFM studies of Pt/Ti/SiO2/Si and Pb(Zr0.52Ti0.48)O3 (PZT) films were carried out. Phase-contrast imaging revealed fine details of their microstructures, including grain boundaries, triple junctions and twinning, which could not be detected by topographic imaging. The studies showed that phase-contrast imaging is capable of providing superior information about surface characteristics when compared to the standard topographic imaging.  相似文献   

10.
We present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.  相似文献   

11.
Atomic force microscopy (AFM) can be used to image cross-sections of thin-film samples. So far, however, it has mainly been used to study cross-sections of epitaxial systems or integrated circuits on crystalline substrates. In this paper, we show that AFM is a powerful tool to image fractured cross-sections of polycrystalline thin films deposited on crystalline and non-crystalline substrates, yielding unique information on the three-dimensional properties of the cross-sections, with a spatial resolution in the nm range. Original images of three different heterostructure systems are presented: Si(wafer)/SnO2/CdS/CdTe, glass/Mo/Cu(In,Ga)Se2,/CdS/ZnO, and glass/SnO2/WO3. We discuss the results by comparing AFM and scanning electron microscopy (SEM) images, and explain, for the different materials, why the AFM provides useful additional information.  相似文献   

12.
An atomic force microscope (AFM) was combined with a conventional optical microscope. The optical microscope proved to be very convenient for locating objects of interest. In addition, the high-resolution AFM image can be compared directly with the traditional optical image. The instrument was used to study chromosome structures. High-resolution chromosome images revealed details of the 30-nm chromatide structure, confirming earlier electron microscopic observations. Chromosomes treated with trypsin revealed a banding pattern in height which is very similar to the optical image observed after staining with Giemsa. Furthermore, it is shown that the AFM can be used to locate DNA probes on in situ hybridized chromosomes. Images of the synaptonemal complex isolated from rat spermatocytes revealed details that improve the understanding of the three-dimensional structure of this protein.  相似文献   

13.
In this study, at the first stage, asphaltene was extracted. The roughness of asphaltene coating at different rpm was studied using an image analysis confocal microscopy. The basics of quantum mechanics and statistical thermodynamics are used to predict the potential energy and the intermolecular forces of asphaltene molecules. The functional forms for the potential energy and intermolecular forces are evaluated. Our final goal is to be able to observe and determine the surface structures of asphaltene micelles with scanning probe microscopes. So, the focus of the work on these unusual molecules is to characterize their structure, dynamics and thermodynamics and to establish the relationship between these properties and petroleum fluid behaviour. The existence of various nanostructures of asphaltene in petroleum has been extensively discussed. A set of fitted data is used to check the validity of the calculated results. The good agreement between the proposed models and the data is promising.  相似文献   

14.
The origin of contrast in atomic force microscopy (AFM) lies in the probe's response to forces between itself and the sample. These forces most commonly result from changes in height as the tip is scanned over the surface, but can also originate in properties inherent in the sample. These have been exploited as further means of contrast and have spawned an array of similar imaging techniques, such as chemical force microscopy, magnetic force microscopy, and frictional force microscopy. All of these techniques use AFM as an extremely sensitive gauge to map forces at discrete sites on the surface. A natural extension of this approach is to map forces in an array, in order to create a force map. AFM can be used in aqueous or fluid environments, thus allowing the exploration of forces in biological systems under physiologically relevant conditions. By immobilizing one half of an interacting pair of proteins onto the tip and the other half onto the substrate, it is possible to investigate the electrostatic and hydrophobic interactions between them. We employed these techniques to examine the interaction between a pair of proteins of known affinity that are involved in exocytosis (NSF and alpha-SNAP) and separately to demonstrate how two-dimensional force mapping can be applied to the nuclear envelope to identify nuclear pore complexes.  相似文献   

15.
The atomic force microscope (AFM) is introduced as a biomolecular manipulation machine capable of assembling biological molecules into well-defined molecular structures. Native collagen molecules were mechanically directed into well-defined, two-dimensional templates exhibiting patterns with feature sizes ranging from a few nanometers to several hundreds of micrometers. The resulting nanostructured collagen matrices were only approximately 3-nm thick, exhibited an extreme mechanical stability, and maintained their properties over the time range of several months. Our results directly demonstrate the plasticity of biological assemblies and provide insight into the physical mechanisms by which biological structures may be organized by cells in vivo. These nanoscopic templates may serve as platforms on non-biological surfaces to direct molecular and cellular processes.  相似文献   

16.
High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds.  相似文献   

17.
A novel algorithm is described and illustrated for high speed imaging of biopolymers and other stringlike samples using atomic force microscopy. The method uses the measurements in real-time to steer the tip of the instrument to localize the scanning area over the sample of interest. Depending on the sample, the scan time can be reduced by an order of magnitude or more while maintaining image resolution. Images are generated by interpolating the non-raster data using a modified Kriging algorithm. The method is demonstrated using physical simulations that include actuator and cantilever dynamics, nonlinear tip-sample interactions, and measurement noise as well as through scanning experiments in which a two-axis nanopositioning stage is steered by the algorithm using simulated height data.  相似文献   

18.
We demonstrate a novel electronic readout for quadrant photodiode based optical beam deflection setups. In our readout, the signals used to calculate the deflections remain as currents, instead of undergoing an immediate conversion to voltages. Bipolar current mirrors are used to perform all mathematical operations at the transistor level, including the signal normalizing division. This method has numerous advantages, leading to significantly simpler designs that avoid large voltage swings and parasitic capacitances. The bandwidth of our readout is solely limited by the capacitance of the quadrant photodiode junctions, making the effective bandwidth a function of the intensity of photocurrents and thus the applied power of the beam deflection laser. Using commercially available components and laser intensities of 1-4 mW we achieved a 3 dB bandwidth of 20 MHz with deflection sensitivities of up to 0.5-1 V/nm and deflection noise levels below 4.5 fm/Hz. Atomic resolution imaging of muscovite mica using FM-AFM in water demonstrates the sensitivity of this novel readout.  相似文献   

19.
The phase imaging atomic force microscopy is a powerful tool in surface characterization of the biomaterials, and the resulting phase image is able to detect chemical variation and reveal more detailed surface properties than the morphological image. However, the chemical‐ and morphological‐dependent phase images were still not distinguished well. In order to better understand actual occurring phase images, we examined non‐carious human maxillary incisor, microphase separated polyurethane and self‐assembling peptide nanofibres. We herein reported that phase image mainly plotted the morphological change: the phase peak corresponding to the morphological valley, and the morphological peak to the phase valley, and exhibited fine surface structures of materials. The chemical‐dependent phase contrast was generally masked by their inherent roughness. For the sample being very rough and having great phase separation, its chemical‐dependent phase contrast could be detected at the hard tapping mode (‘Amp. Ref. “set point ratio”’: ?0.4 to ?0.8), for the sample with medium roughness only at the light tapping mode (‘Amp. Ref.’: ?0.1 to ?0.4). These results will help us understand and determine actual occurring phase images of natural or fabricated biomaterials, even, other materials.  相似文献   

20.
Method of imaging low density lipoproteins by atomic force microscopy   总被引:1,自引:0,他引:1  
This short paper reports a simple method to image low density lipoproteins (LDL) using atomic force microscopy (AFM). This instrument allows imaging of biological samples in liquid and presents the advantage of needing no sample preparation such as staining or fixation that may affect their general structure. Dimensions (diameter and height) of individual LDL particles were successfully measured. AFM imaging revealed that LDL have a quasi-spherical structure on the x and y axis with an oblate spheroid structure in the z axis (i.e., height). LDLs were found to have an average diameter of 23 +/- 3 nm. The obtained mean height was 10 +/- 2 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号