首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase-contrast or refraction-enhanced x-ray radiography can be useful for the diagnostic of low-Z high energy density plasmas, such as imploding inertial confinement fusion (ICF) pellets, due to its sensitivity to density gradients. To separate and quantify the absorption and refraction contributions to x-ray images, methods based on microperiodic optics, such as shearing interferometry, can be used. To enable applying such methods with the energetic x rays needed for ICF radiography, we investigate a new type of optics consisting of grazing incidence microperiodic mirrors. Using such mirrors, efficient phase-contrast imaging systems could be built for energies up to ~100?keV. In addition, a simple lithographic method is proposed for the production of the microperiodic x-ray mirrors based on the difference in the total reflection between a low-Z substrate and a high-Z film. Prototype mirrors fabricated with this method show promising characteristics in laboratory tests.  相似文献   

2.
介绍了用X射线反射测量术表征双层薄膜中低原子序数材料特性的方法。由于低原子序数材料的光学常数与Si基板材料的光学常数非常接近,用X射线反射法确定镀制在Si基板上的低原子序数材料膜层结构的变化十分困难,因此,提出了在镀制低原子序数材料前,首先在基板上镀制一层非常薄的金属层的方法。实验中,选用Cr作为金属层材料,制备并测试了三种不同C膜镀制时间的Cr/C双层薄膜。反射率曲线拟合结果表明,C膜密度约为2.25 g/cm3,沉积速率为0.058 nm/s。  相似文献   

3.
We describe an x-ray absorption method for in situ density measurement of non-crystalline materials in the diamond anvil cell using a monochromatic synchrotron x-ray microbeam. Sample thickness, which is indispensable in the absorption method, can be determined precisely by extrapolating the thickness profile of the gasket obtained by x-ray absorption and diffraction measurements. Diamond deformation across the sample chamber becomes noticeable at high pressures above 10 GPa, which can be monitored with a precision better than 1%, as demonstrated by measurements on crystalline Ag. We have applied the developed method to measure densities of the classic network-forming GeO(2) glass in octahedral form at pressures up to 56 GPa. The fit to the pressure-volume data with the Birch-Murnaghan equation from 13 to 56 GPa gives parameters of V(0)=23.2+/-0.4 cm(3)mol and K=35.8+/-3.0 GPa, assuming that K(')=4. This method could be applicable for in situ determination of the density of liquids and other noncrystalline materials using a diamond anvil cell up to ultrahigh pressures.  相似文献   

4.
To maximize the thickness of the sample chamber in high-pressure experiments, we have conducted tests and have developed techniques relevant to the cubic boron nitride (c-BN) gasket for diamond-anvil cells. The c-BN gasket provides a sample chamber several times thicker than conventional metal gaskets. We have developed methods to prepare the gasket and to fill the chamber with the sample. By using the c-BN gasket, we have successfully measured x-ray diffraction patterns of SiO2 glass, a low-Z noncrystalline sample, up to 100 GPa.  相似文献   

5.
Fusion neutrons streaming from a burning inertial confinement fusion capsule generate gamma rays via inelastic nuclear scattering in the ablator of the capsule. The intensity of gamma-ray emission is proportional to the product of the ablator areal density (ρR) and the yield of fusion neutrons, so by detecting the gamma rays we can infer the ablator areal density, provided we also have a measurement of the capsule's total neutron yield. In plastic-shell capsules, for example, (12)C nuclei emit gamma rays at 4.44 MeV after excitation by 14.1 MeV neutrons from D+T fusion. These gamma rays can be measured by a new gamma-ray detector under development. Analysis of predicted signals is in progress, with results to date indicating that the method promises to be useful for diagnosing imploded capsules.  相似文献   

6.
For an experiment to study neutron radiative beta-decay, we operated large area avalanche photodiodes (APDs) near liquid nitrogen temperature to detect x rays with energies between 0.2 keV and 20 keV. Whereas there are numerous reports of x ray spectrometry using APDs at energies above 1 keV, operation near liquid nitrogen temperature allowed us to reach a nominal threshold of 0.1 keV. However, due to the short penetration depth of x rays below 1 keV, the pulse height spectrum of the APD become complex. We studied the response using monochromatic x ray beams and employed phenomenological fits of the pulse height spectrum to model the measurement of a continuum spectrum from a synchrotron. In addition, the measured pulse height spectrum was modelled using a profile for the variation in efficiency of collection of photoelectrons with depth into the APD. The best results are obtained with the collection efficiency model.  相似文献   

7.
为了减小常规多层膜的带宽,提高其光谱分辨率,对采用低原子序数材料组成的适用于极紫外和软X射线波段的多层膜进行了研究.首先,在14 nm波长处选取3种低原子序数材料对Si/B4C,Si/C和Si/SiC组成多层膜,用随机搜索的方法优化设计了这3种多层膜以及在此波段常用的Mo/Si多层膜.然后,用直流磁控溅射的方法制备Si...  相似文献   

8.
Combined ultrasonic and microtomographic measurements were conducted for simultaneous determination of elastic property and density of noncrystalline materials at high pressures. A Paris-Edinburgh anvil cell was placed in a rotation apparatus, which enabled us to take a series of x-ray radiography images under pressure over a 180° angle range and construct accurately the three-dimensional sample volume using microtomography. In addition, ultrasonic elastic wave velocity measurements were carried out simultaneously using the pulse reflection method with a 10° Y-cut LiNbO(3) transducer attached to the end of the lower anvil. Combined ultrasonic and microtomographic measurements were carried out for SiO(2) glass up to 2.6 GPa and room temperature. A decrease in elastic wave velocities of the SiO(2) glass was observed with increasing pressure, in agreement with previous studies. The simultaneous measurements on elastic wave velocities and density allowed us to derive bulk (K(s)) and shear (G) moduli as a function of pressure. K(s) and G of the SiO(2) glass also decreased with increasing pressure. The negative pressure dependence of K(s) is stronger than that of G, and as a result the value of K(s) became similar to G at 2.0-2.6 GPa. There is no reason why we cannot apply this new technique to high temperatures as well. Hence the results demonstrate that the combined ultrasonic and microtomography technique is a powerful tool to derive advanced (accurate) P-V-K(s)-G-(T) equations of state for noncrystalline materials.  相似文献   

9.
A gasketed diamond-anvil high-pressure cell is described which can be used on a four-circle automatic diffractometer to collect x-ray intensity data from single-crystal samples subjected to truly hydrostatic pressures of over 90 kilobars. The force generating system exerts only forces normal to the diamond faces to obtain maximum reliability. A unique design allows exceptionally large open areas for maximum x-ray access and is particularly well suited for highly absorbing materials, as the x rays are not transmitted through the sample. Studies on ruby show that high-pressure crystal structure determinations may be done rapidly, reliably, and routinely with this system.  相似文献   

10.
We developed cryo‐scanning x‐ray diffraction microscopy, utilizing hard x‐ray ptychography at cryogenic temperature, for the noninvasive, high‐resolution imaging of wet, extended biological samples and report its first frozen‐hydrated imaging. Utilizing phase contrast at hard x‐rays, cryo‐scanning x‐ray diffraction microscopy provides the penetration power suitable for thick samples while retaining sensitivity to minute density changes within unstained samples. It is dose‐efficient and further minimizes radiation damage by keeping the wet samples at cryogenic temperature. We demonstrate these capabilities in two dimensions by imaging unstained frozen‐hydrated budding yeast cells, achieving a spatial resolution of 85 nm with a phase sensitivity of 0.0053 radians. The current work presents the feasibility of cryo‐scanning x‐ray diffraction microscopy for quantitative, high‐resolution imaging of unmodified biological samples extending to tens of micrometres.  相似文献   

11.
A method for calibrating the energy scale of a scintillation detector using γ rays has been proposed and implemented. The technique is based on Compton scattering in the scintillation detector, followed by photoelectric absorption of a scattered γ-ray photon in a Ge detector. The novelty of the method consists in placing the γ-ray source and the scintillation and Ge detectors tightly to each other. The method is efficient for detectors with a low-Z material for which the ratio of the cross sections for Compton scattering and photoeffect is great in value and the attenuation length of the γ-ray flux is comparable to the detector dimensions. The described technique can be used to precisely investigate the dependence of the light yield in a scintillator on the electron energy.  相似文献   

12.
Abstract

A set‐up based on a coincidence measurement was developed in order to separate beta and gamma rays emitted from a 137Cs sample. The coincidence system is composed of a NaI(Tl) and a plastic scintillation detector. According to the experimental results, a clear separation between beta and gamma rays was achieved.  相似文献   

13.
We present a versatile chamber ("atmospheric corrosion cell") for soft x-ray absorption/emission spectroscopy of metal surfaces in a corrosive atmosphere allowing novel in situ electronic structure studies. Synchrotron x rays passing through a thin window separating the corrosion cell interior from a beamline vacuum chamber probe a metal film deposited on a quartz crystal microbalance (QCM) or on the inside of the window. We present some initial results on chloride induced corrosion of iron surfaces in humidified synthetic air. By simultaneous recording of QCM signal and soft x-ray emission from the corroding sample, correlation between mass changes and variations in spectral features is facilitated.  相似文献   

14.
In recent years, tomographic three-dimensional reconstruction approaches using electrons rather than X-rays have become popular. Such images produced with a transmission electron microscope make it possible to image nanometre-scale materials in three-dimensional. However, they are also noisy, limited in contrast and most often have a very poor resolution along the axis of the electron beam. The analysis of images stemming from such modalities, whether fully or semiautomated, is therefore more complicated. In particular, segmentation of objects is difficult. In this paper, we propose to use the continuous maximum flow segmentation method based on a globally optimal minimal surface model. The use of this fully automated segmentation and filtering procedure is illustrated on two different nanoparticle samples and provide comparisons with other classical segmentation methods. The main objectives are the measurement of the attraction rate of polystyrene beads to silica nanoparticle (for the first sample) and interaction of silica nanoparticles with large unilamellar liposomes (for the second sample). We also illustrate how precise measurements such as contact angles can be performed.  相似文献   

15.
We present a technique for measuring the propagation of a supersonic radiation front in low-density foam, where the lack of motion of the objects in its wake makes it difficult to determine its location. We illuminate a thin tracer foil embedded in the foam with a broadband x-ray source, and measure its changing absorption of these x rays as it ionizes. We record both spatial and spectral information of the heated tracer, and thus obtain its ionization state as a function of distance along the front propagation direction. We extrapolate this information to determine the state of the foam and the location of the radiation front. We present the experimental configuration used to test this technique at the Omega laser facility along with experimental results.  相似文献   

16.
A new laboratory x-ray spectrometer for surface-sensitive extended x-ray absorption fine structure [(S)EXAFS] and surface-sensitive x-ray absorption near-edge structure [(S)XANES] measurements is described. The spectrometer employs a 12 kV mA rotating anode generator. It has a monochromator equipped with a set of exchangeable curved crystals of Johann or Johansson type with different cell parameters, orientations, and Rowland radii. The computer controlled movement system based on nine stepping motors allows all the main elements of the spectrometer to be positioned freely relative to the x-ray source and gives an opportunity to use sophisticated scanning modes (for example, a mode with a focus spot position on a sample surface instead of an exit slit). The whole x-ray beam line is completely enclosed in a vacuum chamber that is directly connected to the x-ray generator, thereby preventing the absorption of x rays in the air. This layout allows a wide x-ray photon energy range from a few keV up to dozens of keV. A registration of x rays transmitted through the sample with proportional counter- and photoelectrons emitted from the sample with channeltron is used to carry out bulk- and surface-sensitive measurements, respectively. Using a 25 x 200 kV mA power regime of a rotating anode x-ray generator, a photon flux of 2.5 x 10(5) counts/s was registered at the Cu K edge, where the energy resolution was about 5 eV. High near surface sensitivity is demonstrated by the EXAFS spectra of Cu K and Hf LIII edges measured from 3 nm Cu and Hf oxide films.  相似文献   

17.
Measuring medium‐range order is a challenging and important problem in the structural study of disordered materials. We have developed a new technique, fluctuation x‐ray microscopy, that offers quantitative insight into medium‐range correlations in disordered materials at nanometre and larger length scales.In this technique, which requires a spatially coherent x‐ray beam, a series of speckle patterns are measured at a large number of locations in a sample using various illumination sizes. Examination of the speckle variance as a function of the illumination spot size allows the structural correlation length to be measured. To demonstrate this technique we have studied polystyrene latex spheres, which serve as a model for a dense random‐packed glass, and for the first time have measured the correlation length in a disordered system by fluctuation X‐ray microscopy. We discuss data analysis and procedures to correct for shot noise and detector noise. This approach could be used to explore medium‐range order and subtle spatial structural changes in a wide range of disordered materials, from soft matter to nanowire arrays, semiconductor quantum dot arrays and magnetic materials.  相似文献   

18.
提出了一种简单的流体密度梯度分布测量系统,该系统在传统纹影系统中引入计量光栅,将光线因流体密度变化引起的偏折转变为投影条纹图的变形,通过分析变形条纹图来提取流体密度梯度分布信息.在分析条纹图时,使用小波变换相位分析法,利用小波变换的局部化特性,有效消除无效数据的影响.实验结果表明:系统的密度梯度测量范围能够达到0.01 g/cm4,测量精度能够达到5×10-6 g/cm4.系统装置简单,调节方便,适用于密度变化大的流体密度梯度测量.  相似文献   

19.
A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to approximately 900 degrees C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly.  相似文献   

20.
Many new materials emerging are strictly two dimensional (2D), often only one or two monolayers thick. They include transition metal dichalcogenides, such as MoS2, and graphene. Graphene in particular appears to have many potential applications. Typically the crystalline film without contamination is of interest. Therefore, a reliable method is needed to routinely evaluate the quality of the synthesized samples. Here, we present one such candidate method that utilizes standard electron diffraction and low/medium magnification imaging in a rudimentary transmission electron microscope. The electron irradiation dose is very low thus reducing electron irradiation damage of the investigated samples. As an example, the method was applied to the evaluation of as‐grown graphene sample quality and a study on heating‐induced change in graphene. It can be used to evaluate the volume and areal ratio of crystalline to noncrystalline component. The method is amiable to automated film quality evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号