首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports experimental investigations on the droplet formation and size manipulation of deionized water (DIW) and nanofluids in a microfluidic T-junction at different temperatures. Investigations of the effect of microchannel depths on the droplet formation process showed that the smaller the depth of the channel the larger the increase of droplet size with temperature. Sample nanofluids were prepared by dispersing 0.1 volume percentage of titanium dioxide (TiO2) nanoparticles of 15 nm and 10 nm × 40 nm in DIW for their droplet formation experiments. The heater temperature also affects the droplet formation process. Present results demonstrate that nanofluids exhibit different characteristics in droplet formation with the temperature. Addition of spherical-shaped TiO2 (15 nm) nanoparticles in DIW results in much smaller droplet size compared to the cylindrical-shaped TiO2 (10 nm × 40 nm) nanoparticles. Besides changing the interfacial properties of based fluid, nanoparticles can influence the droplet formation of nanofluids by introducing interfacial slip at the interface. Other than nanofluid with cylindrical-shaped nanoparticles, the droplet size was found to increase with increasing temperature.  相似文献   

2.
M.J.  Y.  T.  E.  S.  R.  K.-H.  U. 《Sensors and actuators. A, Physical》2008,147(2):508-515
In this article, we introduce a new autonomous planar array sensor based on the measurements of electrical conductivity which has been applied to the visualization of fluid distributions inside a fluid coupling during normal operation. The sensor is composed of approximately 1000 interdigital sensing structures which are used to measure the two-dimensional electrical conductivity distribution at the sensor's surface with a fast multiplexed probing–sensing scheme at up to 10 kHz frame rate. Two such sensors were used to measure dynamic two-phase flow patterns in a fluid coupling at full operation at 790 rpm speed. Therefore, the sensors were mounted on the pressure-side and the suction-side walls of a blade channel inside a test coupling. The whole measurement system is run on a battery and controlled via wireless link, thus being fully autonomous, which enables sensor and electronics to rotate together with the coupling.  相似文献   

3.
In this work we combined numerical simulation with molecular-diffusion effect, high-tempo micro-particle image velocimetry (μ-PIV), and probability distribution function (PDF) analysis to investigate the chaotic mixing and hydrodynamics inside a droplet moving through a planar serpentine micromixer (PSM). Robust solutions for the distributions of interface and concentration of the droplets were obtained via computational fluid dynamics. The simulated fluid patterns are consistent with those measured with μ-PIV, which serves as a powerful nonintrusive diagnostic approach to observe the droplets. Two mechanisms are proposed to enhance the performance of mixing in a PSM—the deformation of droplets and the asymmetric recirculation within the droplets. On introducing alternating cross sections into a winding channel, this specific design of PSM is found to amplify the fluid disturbance and maximum vorticity difference. Data show that the PDF of the vorticity fields is modified and the fraction with larger vorticity is increased. Accordingly, the PSM is capable of achieving a mixing index 90% within 700 μm (Re = 2), which is eight times better than for a straight microchannel. The results not only demonstrate explicitly the fluid patterns within the droplets but also provide significant insight into the factors dominating the mixing efficiency.  相似文献   

4.
This paper reports the experimental results on kinematics and deformation of ferrofluid droplets driven by planar coils. Ferrofluid droplets act as liquid magnets, which can be controlled and manipulated by an external magnetic field. In our experiments, the magnetic field was generated by two pairs of planar coils, which were fabricated on a double-sided printed circuit board. The first pair of coils constrains the ferrofluid droplet to a one-dimensional motion. The second pair generates the magnetic gradient needed for the droplet motion. The direction of the motion can be controlled by changing the sign of the gradient or of the driving current. Kinematic characteristics of the droplet such as the velocity–position diagram and the aspect ratio of the droplet are investigated. The analysis and discussion are based on the different parameters such as the droplet size, the viscosity of the surrounding medium, and the driving current. This simple actuation concept would allow the implementation of lab-on-a-chip platforms based on ferrofluid droplets.  相似文献   

5.
An integrated flow-cell for full sample stream control   总被引:1,自引:1,他引:0  
In this study, we present a novel three-dimensional hydrodynamic sheath flow chip that allows full control of a sample stream. The chip offers the possibility to steer each of the four side sheath flows individually. The design of the flow-cell exhibits high flexibility in creating different sample stream profiles (width and height) and allows navigation of the sample stream to every desired position inside the microchannel (vertical and horizontal). This can be used to bring the sample stream to a sensing area for analysis, or to an area of actuation (e.g. for cell sorting). In addition, we studied the creation of very small sample stream diameters. In microchannels (typically 25 × 40 μm2), we created sample stream diameters that were five to ten times smaller than the channel dimensions, and the smallest measured sample stream width was 1.5 μm. Typical flow rates are 0.5 μl/min for the sample flow and around 100 μl/min for the cumulated sheath flows. The planar microfabricated chip, consisting of a silicon–glass sandwich with an intermediate SU-8 layer, is much smaller (6 × 9 mm2) than the previously presented sheath flow devices, which makes it also cost-effective. We present the chip design, fluidic simulation results and experiments, where the size, shape and position of the sample stream have been established by laser scanning confocal microscopy and dye intensity analysis.  相似文献   

6.
Surface microfluidic systems have emerged as an attractive alternative to conventional closed-channel microfluidic devices. In many such systems, electric fields are leveraged for the manipulation and transport of discrete nanoliter droplets on open planar surfaces. The present research work discusses dielectrophoretic liquid and droplet actuations, which provide an attractive methodology for dispensing and manipulating nanoliter and picoliter droplets on planar surfaces. We demonstrate the integration of two independent sample actuation schemes, namely liquid dielectrophoresis (L-DEP) and droplet dielectrophoresis, and furthermore validate its applicability through model biochemical assays (DNA-PicoGreen® assay and DNA FRET assay). We also describe and present ‘tapering L-DEP’ actuation scheme, whereby we demonstrate how to simultaneously create multiple droplets of different sizes and volumes in the range of nanoliter and picoliters, from a given larger parent sample droplet.  相似文献   

7.
In this paper, we describe a method for encapsulation of biomaterials in hydrogel beads using a microfluidic droplet-merging channel. We devised a double T-junction in a microfluidic channel for alternate injection of aqueous fluids inside a droplet unit carried within immiscible oil. With this device, hydrogel beads with diameter <100 μm are produced, and various solutions containing cells, proteins and reagents for gelation could merge with the gel droplets with high efficiency in the broad range of flow rates. Mixing of reagents and reactions inside the hydrogel beads are continuously observed in a microchannel through a microscope. By enabling serial injection of each liquid with the dispersed gel droplets after they are produced from the oil-focusing channel, the device simplifies the sample preparation process, and gel-bead fabrication can be coupled with further assay continuously in a single channel. Instantaneous reactions of enzyme inside hydrogel and in-situ formation of cell-containing beads with high viability are demonstrated in this report.  相似文献   

8.
Temperature modeling and measurement of an electrokinetic separation chip   总被引:1,自引:1,他引:0  
This work presents experimental [infrared (IR) thermography] and computational (finite element model) results of temperature distributions of an electrokinetic separation chip. Thermal characteristics of both the electrolyte solution and the polymer chip (SU-8) are taken into account in modeling temperature distributions during electrokinetic flow. Multiphysics and multiscale simulation couples electrostatics, heat transfer, and fluid dynamics. The accompanying IR thermography is a non-contact method, which can measure fractional temperature differences with sub-second time resolution. Any structures or temperature marker molecules interfering with the experiment are not needed. Nominal spot size in the IR measurements is 30 μm with a field of view of several millimeters enabling both local and chip-scale temperature monitoring simultaneously. As a result, we present a computer model for electrokinetic chips, which enables simulation of fractional temperature changes during electrophoresis under real operating conditions. The accuracy of the model is within ±1°C when the deviation in electrochemical processes is taken into account. The simulation results also suggest that the temperature on the chip surface qualitatively reflects the temperature inside the microchannel with an average offset of 1–2°C.  相似文献   

9.
Microchannel (MC) emulsification is a promising technique to produce monodisperse emulsions by spontaneous interfacial-tension-driven droplet generation. The purpose of this study was to systematically characterize the effect of temperature on droplet generation by MC emulsification, which is a major uncharted area. The temperature of an MC emulsification module was controlled between 10 and 70°C. Refined soybean oil was used as the dispersed phase and a Milli-Q water solution containing sodium dodecyl sulfate (1 wt%) as the continuous phase. Monodisperse oil-in-water (O/W) emulsions with a coefficient of variation below 4% were produced, and at all the operating temperatures, their average droplet diameter ranged from 32 to 38 μm. We also investigated the effect of flow velocity of the dispersed phase on droplet generation characteristics. The maximum droplet generation rate (frequency) from a channel at 70°C exceeded that at 10°C by 8.1 times, due to the remarkable decrease in viscosity of the two phases. Analysis using dimensionless numbers indicated that the flow of the dispersed phase during droplet generation could be explained using an adapted capillary number that includes the effect of the contact angle of the dispersed phase to the chip surface.  相似文献   

10.
Dip pen nanolithography (DPN) is a method of creating nanoscale chemical patterns on surfaces using an atomic force microscope (AFM) probe. Until now, efforts to increase the process throughput have focused on passive multi-probe arrays and active arrays based on thermal bimetallic actuation. This paper describes the first use of electrostatic actuation to create an active DPN probe array. Electrostatic actuation offers the benefit of actuation without the probe heating required for thermal bimetallic actuation. Actuator cross talk between neighboring probes is also reduced, permitting more densely spaced probe arrays. The array presented here consists of 10 cantilever probes, where each is 120 μm long and 20 μm wide. Each cantilever probe is actuated by the electrostatic force between the probe and a built-in counter electrode with a 20–25 μm gap. The tip-to-tip probe spacing, also called the array pitch, is 30 μm. Patterns of 1-octadecanethiol were created on gold surfaces to demonstrate single-probe actuation, simultaneous multi-probe actuation, and overlap of patterns from adjacent probes. The minimum line width was 25 nm with an average line width of 30–40 nm.  相似文献   

11.
Inertial microfluidics for continuous particle filtration and extraction   总被引:3,自引:2,他引:1  
In this paper, we describe a simple passive microfluidic device with rectangular microchannel geometry for continuous particle filtration. The design takes advantage of preferential migration of particles in rectangular microchannels based on shear-induced inertial lift forces. These dominant inertial forces cause particles to move laterally and occupy equilibrium positions along the longer vertical microchannel walls. Using this principle, we demonstrate extraction of 590 nm particles from a mixture of 1.9 μm and 590 nm particles in a straight microfluidic channel with rectangular cross-section. Based on the theoretical analysis and experimental data, we describe conditions required for predicting the onset of particle equilibration in square and rectangular microchannels. The microfluidic channel design has a simple planar structure and can be easily integrated with on-chip microfluidic components for filtration and extraction of wide range of particle sizes. The ability to continuously and differentially equilibrate particles of different size without external forces in microchannels is expected to have numerous applications in filtration, cytometry, and bioseparations.  相似文献   

12.
A new droplet-driving scheme for digital microfluidics termed the “pre-charging of a droplet” is demonstrated. In this method, a droplet is initially charged by applying “pre-charging” voltage between the droplet and an electrode buried under dielectric layers. The droplet is then driven to the next electrode by applying “driving” voltage between two adjacent buried electrodes. The concept of pre-charging was proved by the polarity of the charge stored in the droplet. When the droplet is pre-charged with positive voltage, it is driven with negative voltage and vice versa. Therefore, the magnitudes of the pre-charging and driving voltages are identical, but only with the opposite polarity. A 2.5-μL deionized water droplet is pre-charged and driven at a minimal voltage of 12 V. The charge stored in the droplet by this pre-charging method remained for more than 2 min, and the driving actuation could be repeated more than 150 times while the droplet remained its charged state. This method suggests a new means of driving a droplet for digital microfluidics at a relatively low voltage by utilizing both the electrostatic and dielectrophoretic force in the droplet transport process with a simpler structure compared to other single-plate structured devices.  相似文献   

13.
The integration of a PDMS membrane within orthogonally placed PMMA microfluidic channels enables the pneumatic actuation of valves within bonded PMMA–PDMS–PMMA multilayer devices. Here, surface functionalization of PMMA substrates via acid catalyzed hydrolysis and air plasma corona treatment were investigated as possible techniques to permanently bond PMMA microfluidic channels to PDMS surfaces. FTIR and water contact angle analysis of functionalized PMMA substrates showed that air plasma corona treatment was most effective in inducing PMMA hydrophilicity. Subsequent fluidic tests showed that air plasma modified and bonded PMMA multilayer devices could withstand fluid leakage at an operational flow rate of 9 μl/min. The pneumatic actuation of the embedded PDMS membrane was observed through optical microscopy and an electrical resistance based technique. PDMS membrane actuation occurred at pneumatic pressures of as low as 10 kPa and complete valving occurred at 14 kPa for ~100 μm by 100 μm channel cross-sections.  相似文献   

14.
This paper presents a detection scheme for analyzing the temperature distribution nearby the channel wall in a microfluidic chip utilizing a temperature-dependent fluorescence dye. An advanced optical microscope system—total internal reflection fluorescence microscope (TIRFM) is used for measuring the temperature distribution on the channel wall at the point of electroosmotic flow in an electrokinetically driven microfluidic chip. In order to meet the short working distance of the objective type TIRFM scheme, microscope cover glass slits are used to fabricate the microfluidic chips. The short fluorescence excitation depth from a TIRFM system makes the intensity information obtained using TIRFM is not sensitive to the channel depth variation which ususally biases the measured results while using a conventional Epi-fluorescence microscope (EPI-FM). Therefore, a TIRFM can precisely describe the temperature profile of the distance within 100 nm of the channel wall where consists of the Stern layer and the diffusion layer for an electrokinetic microfluidic system. Results indicate the proposed TIRFM provides higher measurement sensitivity over the EPI-FM. Significant temperature gradient along the channel depth is experimentally observed. In addition, the measured wall temperature distributions can be the boundary conditions for numerical investigation into the joule heating effect. The proposed method gives a precise temperature profile of microfluidic channels and shows the substantial impact on developing a numerical simulation model for precisely predicting the joule heating effect in microfluidic chips.  相似文献   

15.
The design, fabrication and test results of an all-optical cross-connect, which uses electrostatically actuated micromechanical digital mirrors to steer optical signals in a network of planar waveguides, are presented. The substrate consists of a network of spliced planar waveguides on silica substrates. The switches, located at the waveguide intersections, are formed with an electroplated T-structure consisting of a horizontal perforated square plate suspended by four elastic beams. When operated, the horizontal plate is pulled up making the mirror move out of the optical path thus steering the beam. An 8×8 switch array has been fabricated and tested. Actuation and relaxation switching times near 3 ms have been demonstrated with an actuation voltage of 120 V. The optical insertion loss for the array typically varied from 2.3 dB for a single trench in the optical path (shortest optical path) to 8 dB for 15 trenches in the optical path (longest optical path).  相似文献   

16.
Uniformly sized droplets of soybean oil, MCT (medium-chain fatty acid triglyceride) oil and n-tetradecane with a Sauter mean diameter of d 3,2 = 26–35 μm and a distribution span of 0.21–0.25 have been produced at high throughputs using a 24 × 24 mm silicon microchannel plate consisting of 23,348 asymmetric channels fabricated by photolithography and deep reactive ion etching. Each channel consisted of a 10-μm diameter straight-through micro-hole with a length of 70 μm and a 50 × 10 μm micro-slot with a depth of 30 μm at the outlet of each channel. The maximum dispersed phase flux for monodisperse emulsion generation increased with decreasing dispersed phase viscosity and ranged from over 120 L m−2 h−1 for soybean oil to 2,700 L m−2 h−1 for n-tetradecane. The droplet generation frequency showed significant channel to channel variations and increased with decreasing viscosity of the dispersed phase. For n-tetradecane, the maximum mean droplet generation frequency was 250 Hz per single active channel, corresponding to the overall throughput in the device of 3.2 million droplets per second. The proportion of active channels at high throughputs approached 100% for soybean oil and MCT oil, and 50% for n-tetradecane. The agreement between the experimental and CFD (Computational Fluid Dynamics) results was excellent for soybean oil and the poorest for n-tetradecane.  相似文献   

17.
One of the most important and promising research areas in biomedical and micropumping applications is magnetic actuation of ferrofluids with dynamic magnetic fields. For ensuring the use of ferrofluids in various applications in engineering fields, their flows generated by magnetic fields should be extensively investigated and simulated. In this study, simulations of ferrofluid actuation with dynamic magnetic fields were performed by modeling it using the COMSOL Multiphysics software, and iron oxide nanoparticle-based ferrofluids at different angles of rotating magnets were considered to provide insight into ferrofluid flow in small channels. Ferrofluid flows were modeled at different magnetic flux densities provided by rotating magnets, and velocity profiles inside the channel were analyzed. It was shown that ferrofluid actuation can be considered as a futuristic micropumping alternative, simulation results matched well with the experimental results of previous work, and the established model could serve as a tool to analyze ferrofluid flows generated by dynamic magnetic fields. The results of the model show that flow rates up to 100 µl/s can be reached at a rotation angle of 30° by using dynamic magnetic fields. Various applications including biomedical applications might be envisaged.  相似文献   

18.
A scaling model for electrowetting-on-dielectric microfluidic actuators   总被引:2,自引:2,他引:0  
A hydrodynamic scaling model of droplet actuation in an electrowetting-on-dielectric (EWD) actuator is presented that takes into account the effects of contact angle hysteresis, drag from the filler fluid, drag from the solid walls, and change in the actuation force while a droplet traverses a neighboring electrode. Based on this model, the threshold voltage, V T, for droplet actuation is estimated as a function of the filler medium of a scaled device. It is shown that scaling models of droplet splitting and liquid dispensing all show a similar scaling dependence on [tr(d/L)]1/2, where t is insulator thickness and d/L is the aspect ratio of the device. It is also determined that reliable operation of a EWD actuator is possible as long as the device is operated within the limits of the Lippmann–Young equation. The upper limit on applied voltage, V sat, corresponds to contact-angle saturation. The minimum 3-electrode splitting voltages as a function of aspect ratio d/L < 1 for an oil medium are less than V sat. However, for an air medium the minimum voltage for 3-electrode droplet splitting exceeds V sat for d/L ≥ 0.4. EWD actuators were fabricated to operate with droplets down to 35pl. Reasonable scaling results were achieved.
R. B. FairEmail:
  相似文献   

19.
In this paper, we report a 1 × 4 optical switch using deformable liquid droplet. The deformation is produced by the electrowetting on dielectric phenomenon. The device consists of a dyed oil and a transparent conductive liquid sealed in a transparent cylinder. The top glass cover of the device has four independently addressable electrodes for the actuation of the liquid dome in each direction. In the voltage‐off state, incident light is absorbed by the dyed liquid. When the voltage is applied to the liquid, the dome of the transparent liquid is uplifted and then spreads to four different directions because of the effect of electrostatic force. Accordingly, the transparent liquid pushes the dyed oil out to form a light path. The device with simple structure can freely control multiple switch apertures through changing the driven voltage. In addition, we analyze the electro‐optical characteristics such as transmittance, response time (open time ~110 ms, close time ~160 ms), contrast ratio (~661:1).  相似文献   

20.
The dominance of surface tension over inertia in microscale and favorable scale effect for electrostatic actuation allow electrostatically driven metal-droplet systems practical. Because of such potential advantages as low contact resistance, naturally bistable operation, and high switch density, the liquid-metal droplet switch is an excellent candidate for reconfigurable circuit interconnections. Following earlier droplet microswitch examples and related studies of metal-droplet behavior, we report the first functioning droplet switch directly integrated on top of a functional CMOS circuit. While the surface tension dominance makes the droplet switches practical as a mechanical system and also brings bistability, it also requires a high electric field to move the droplet. We implement the concept of physical surface modification to lower the driving voltage to a value that a commercial CMOS process can provide. Unlike previous droplet switches, the reported device is planar-processed to allow the integration with the underlying CMOS circuits. The integrated switch is made functional by such provisions as self-limiting actuation and by optimizing the electrostatic force in the planar configuration and avoiding liquid-metal "flooding" into surface patterns. A fabrication process for low driving voltage and high compatibility is developed to integrate the droplet switch on the custom-developed CMOS chip. A packaging method adapted from well-established microelectronic packaging isolates the active switch space from the surrounding environment. Low driving voltage (as low as 15 V) and millisecond switching speed are achieved by the current on-chip device. While the current device uses /spl sim/150 /spl mu/m droplets for demonstration, additional theoretical and experimental results indicate that further miniaturization would lead to smaller devices and lower operation voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号