首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Layered sheet-like nanocrystalline VO2·½(H2O) has been synthesized by hydrothermal process using V2O5 as vanadium source and 2-phenylethylamine as a reducing agent and a structure-directing template. Techniques X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption/desorption isotherms have been used to characterize the structure, morphology and composition of the materials. Electrical conductivity measurements showed that the as synthesized VO2·½(H2O) nanosheets has a conductivity value which goes from 75 × 10?6 Ω?1 cm?1 at 298 K, to 68 10?5 Ω?1 cm?1 at 386 K with activation energy of 0.24 eV.  相似文献   

2.
Transparent conductive oxide tungsten-doped tin oxide thin films were deposited on glass substrates from ceramic targets by the pulsed plasma deposition method. The structural, electrical and optical properties have been investigated as functions of tungsten doping content and oxygen partial pressure. The lowest resistivity of 2.1 × 10? 3 Ω?cm was reproducibly obtained, with carrier mobility of 30 cm2V? 1s? 1 and carrier concentration of 9.6 × 1019 cm? 3 at the oxygen partial pressure of 1.8 Pa. The average optical transmission was in excess of 80% in the visible region from 400 to 700 nm, with the optical band gap ranging from 3.91 to 4.02 eV.  相似文献   

3.
Cobalt oxide nanocrystals of size 10–15 nm have been prepared by a simple co-precipitation method. The structural investigations have been performed with X-ray diffraction and Transmission Electron Microscopy. Specific surface area of the nanocrystals is 77.5 × 104 cm2/g which have been calculated by X-ray diffraction data. Optical properties are discussed with UV/visible spectroscopy which shows the multiple band gap energies 2.28 eV (O? II  CoII) and 1.57 eV (O? II  CoIII) which suggest the possibility of degeneracy of the valence band. The magnetic behavior is investigated using Vibrating Sample Magnetometer. The Co3O4 nanocrystals possess paramagnetic character at room temperature.  相似文献   

4.
The single crystals with stoichiometry close to 1:1:2 of CuInTe2 (CIT) have been grown by chemical vapor transport (CVT) technique using iodine as the transporting agent at different growth temperatures. Single crystal X-ray diffraction studies have confirmed the chalcopyrite structure for the grown crystals and the volume of unit cell is found to be the same for the crystals grown at different conditions. Energy dispersive X-ray (EDAX) analysis of CIT single crystals grown shows almost the same stoichiometric compositions. Scanning electron microscope (SEM) analysis reveals kink, step and layer patterns on the surface of CIT single crystals depending on the growth temperatures. The optical absorption spectra of as-grown CIT single crystals grown at different conditions show that they have same band gap energies (1.0405 eV). Raman spectra exhibit a high intensity peak of A1 mode at 123 cm?1. Annealed at 473 K in nitrogen atmosphere for 40 h CIT single crystals have higher hole mobility (105.6 cm2V?1s?1) and hole concentration (23.28 × 1017 cm?3) compared with values of hole mobility (63.69 cm2 V?1 s?1) and hole concentration (6.99 × 1015 cm?3) of the as-grown CIT single crystals.  相似文献   

5.
Bio-nanocomposite films based on chitosan and manganese oxide nanoflake have been fabricated via the layer-by-layer (LBL) self-assembly technique. UV–vis absorption spectra showed that the subsequent growth of the nanocomposite film was regular and highly reproducible from layer to layer. X-ray photoelectron spectroscopy (XPS) spectra confirmed the incorporation of chitosan and manganese oxide nanoflake into the films. Scanning electron microscopy (SEM) images revealed that the nanocomposite film had a continuous surface and a layered structure. A sensitive hydrogen peroxide (H2O2) amperometric sensor was fabricated with the chitosan–manganese oxide nanoflake nanocompoite film. The sensor showed a rapid and linear response to H2O2 over the range from 2.5 × 10? 6 to 1.05 × 10? 3 M, with a sensitivity of 0.038 A M? 1 cm? 2.  相似文献   

6.
Zhong Zhi You  Gu Jin Hua 《Materials Letters》2011,65(21-22):3234-3236
Gallium-doped zinc oxide (ZnO:Ga) films were prepared on glass substrates by RF magnetron sputtering. The effect of growth temperature on microstructure, optical and electrical properties of the films was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–visible spectrophotometer and four-point probe. The results show that all the films are polycrystalline and (002) oriented, and that the growth temperature significantly affects the microstructure and optoelectrical properties of the films. The film deposited at 670 K has the largest grain size of 71.9 nm, the lowest resistivity of 8.3 × 10? 4 Ω?cm and the highest figure of merit of 2.1 × 10? 2 Ω? 1. Furthermore, the optical energy gaps and optical constants were determined by optical characterization methods. The dispersion behavior of the refractive index was also studied using the Sellmeir's dispersion model and the oscillator parameters of the films were obtained.  相似文献   

7.
TlGaSe2 single crystals were grown by modified Bridgman method. The crystals were identified structurally by X-ray diffraction. Measurements of electrical conductivity and Hall effect were performed in the range (200–492 K) and (163–602 K) for thermoelectric power (TEP) measurements. Anisotropic nature of the layered TlGaSe2 crystal was investigated. Hall effect and thermoelectric power measurements revealed the extrinsic p-type conduction in the low temperature range of the study. The analysis of the temperature-dependent electrical conductivity and carrier concentration reveal that the acceptor level is located at 0.2 eV above the valence band of TlGaSe2. From the obtained experimental data, the main characteristic parameters of the crystals have been estimated. Energy gap and acceptor concentration were 2.23 eV and 9.6 × 1013 cm?3 respectively.  相似文献   

8.
The temperature dependent transport properties of molybdenum oxide (MoO3) doped N,N′-di(1-naphthyl)-N,N′-diphenylbenzidin (α-NPD) were studied over a frequency range of 100 Hz to 1 MHz. The value of trap density and mobility calculated by detailed analysis of current–voltage (IV) characteristics are 9.43 × 1026 m?3 and 1.23 × 10?6 cm2 V?1 s?1, respectively. The relaxation time for the carriers in the bulk and in the interface region decreases with temperature. The Cole–Cole plot indicates the device can be modeled as the combination of two parallel resistor–capacitor (RC) circuits with a series resistance of around 70 Ω. The dc conductivity shows two different regions in the studied temperature range with activation energy of Ea  0.107 eV (region I) and Ea  52 meV (region II), respectively. The ac conductivity follows the universal power law and the onset frequency increases with increase of temperature. The temperature dependent conduction mechanism can be explained by correlated hopping barrier (CBH) model.  相似文献   

9.
Electrical properties, deep traps spectra and luminescence spectra were studied for two undoped a-plane GaN (a-GaN) films grown on r-plane sapphire using metalorganic chemical vapor deposition and differing by structural perfection. For sample A, the a-GaN film was directly deposited on AlN buffer. A two-step growth scheme was implemented for sample B, including an initial islanding growth stage and a subsequent enhanced lateral growth. Preliminary detailed X-ray analysis showed that the stacking faults density was 8 × 105 cm?1 for sample A and 1.7 × 105 cm?1 for sample B. Electrical properties of a-GaN films were largely determined by deep traps with a level near Ec ?0.6 eV, with other prominent traps having the activation energy of 0.25 eV. The Fermi level was pinned by the Ec ?0.6 eV deep traps for sample A, but shifted to the vicinity of the shallower 0.25 eV traps for sample B, most likely due to the reduced density of the 0.6 eV traps. This decrease of deep traps density is accompanied by a very pronounced improvement in the overall luminescence intensity. A correlation of the observed improvement in deep traps spectra and luminescence efficiency with the improved crystalline quality of the films is discussed.  相似文献   

10.
Ga doped ZnO (GZO) and GaP codoped ZnO (GPZO) thin films of different concentrations (1–4 mol%) have been grown on sapphire substrates by RF sputtering for the fabrication of ZnO homojunction. The grown films have been characterized by X-ray diffraction (XRD), photoluminescence (PL), Hall measurement, energy dispersive spectroscopy (EDS), time-of-flight secondary ion mass spectrometer (ToF-SIMS), UV–Vis–NIR spectroscopy and atomic force microscopy (AFM). Unlike in conventional codoping, here we directly doped (codoped) GaP into ZnO to realize p-ZnO. The Hall measurements indicate that 2 and 4% GPZO films exhibit p-conductivity due to the sufficient amount of phosphorous incorporation while all the monodoped GZO films showed n-conductivity as expected. Among the p-ZnO films, 2% GPZO film shows low resistivity (2.17 Ωcm) and high hole concentration (1.8 × 1018 cm?3) by optimum incorporation of phosphorous due to best codoping. Similarly, among the n-type films, 2% GZO shows low resistivity (1.32 Ωcm) and high electron concentration (2.02 × 1019 cm?3) by optimum amount of Ga incorporation. The blue shift and red shift in NBE emission observed from PL acknowledged the formation of n- and p-conduction in monodoped and codoped films, respectively. The neutral acceptor bound exciton recombination (A0X) observed by low temperature PL for 2% GPZO confirms the p-conductivity. Further, the high concentration of P atoms than Ga observed from ToF-SIMS (2% GPZO) also supports the p-conductivity of the films. The fabricated p–n junction with best codoped p-(ZnO)0.98(GaP)0.02 and best monodoped n-Zn0.98Ga0.02O films showed typical rectification behavior of a diode. The diode parameters have also been estimated for the fabricated homojunction.  相似文献   

11.
《Materials Research Bulletin》2013,48(11):4901-4906
Nanocrystalline titanium oxide (TiO2) thin films were deposited on silicon (1 0 0) and quartz substrates at various oxygen partial pressures (1 × 10−5 to 3.5 × 10−1 mbar) with a substrate temperature of 973 K by pulsed laser deposition. The microstructural and optical properties were characterized using Grazing incidence X-ray diffraction, atomic force microscopy, UV–visible spectroscopy and photoluminescence. The X-ray diffraction studies indicated the formation of mixed phases (anatase and rutile) at higher oxygen partial pressures (3.5 × 10−2 to 3.5 × 10−1 mbar) and strong rutile phase at lower oxygen partial pressures (1 × 10−5 to 3.5 × 10−3 mbar). The atomic force microscopy studies showed the dense and uniform distribution of nanocrystallites. The root mean square surface roughness of the films increased with increasing oxygen partial pressures. The UV–visible studies showed that the bandgap of the films increased from 3.20 eV to 3.60 eV with the increase of oxygen partial pressures. The refractive index was found to decrease from 2.73 to 2.06 (at 550 nm) as the oxygen partial pressure increased from 1.5 × 10−4 mbar to 3.5 × 10−1 mbar. The photoluminescence peaks were fitted to Gaussian function and the bandgap was found to be in the range ∼3.28–3.40 eV for anatase and 2.98–3.13 eV for rutile phases with increasing oxygen partial pressure from 1 × 10−5 to 3.5 × 10−1 mbar.  相似文献   

12.
H. Xie  F.L. Ng  X.T. Zeng 《Thin solid films》2009,517(17):5066-5069
Spectroscopic ellipsometry (SE) was employed to realize in-situ monitoring and the determination of thermo-optic coefficients (TOC) of thin films by integrating a temperature controlled hot stage to the ellipsometer and applying the empirical relationship of Cauchy between the refractive index and wavelength in the data analysis. Magnetron sputtered titanium oxide thin films of 350 nm thick both as-deposited and post-deposition annealed were prepared on silicon wafers for this investigation. Results of ellipsometric analysis show that as-deposited TiO2 films have a negative TOC of ? 1.21 × 10? 4 K? 1 at 630 nm over the test temperature range 304–378 K. The post-deposition annealing at 923 K for 2 hours leads an increase in film refractive index to 2.29 from 2.17 for as-deposited TiO2 films, and an enhancement in TOC up to ? 2.14 × 10? 4 K? 1. X-ray diffraction (XRD) and scanning electron microscopy (SEM) cross-sectional analysis were performed for film structure characterization.  相似文献   

13.
Cubic ZnTe nanocrystals were produced from 1:1 and 1.8:1 molar ratios of Zn:Te by a 900 W microwave plasma. The phase was detected using X-ray diffraction (XRD), which are in accordance with those of the simulations, and selected area electron diffraction (SAED). Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the products were nanocrystals with different orientations, including three longitudinal optical (LO) vibrations at 205, 410 and 620 cm? 1 and a transverse optical (TO) vibration at 166 cm? 1. Their green emissions were detected at 562 nm (2.21 eV) using luminescence spectrophotometry.  相似文献   

14.
Fluorine-doped ZnO transparent conductive thin films were successfully deposited on glass substrate by radio frequency magnetron sputtering of ZnF2. The effects of rapid thermal annealing in vacuum on the optical and electrical properties of fluorine-doped ZnO thin films have been investigated. X-ray diffraction spectra indicate that no fluorine compounds, such as ZnF2, except ZnO were observed. The specimen annealed at 500 °C has the lowest resistivity of 6.65 × 10? 4 Ω cm, the highest carrier concentration of 1.95 × 1021 cm? 3, and the highest energy band gap of 3.46 eV. The average transmittance in the visible region of the F-doped ZnO thin films as-deposited and annealed is over 90%.  相似文献   

15.
Multiferroic BFO/PZT multilayer films were fabricated by spin-coating method on the (1 1 1)Pt/Ti/SiO2/Si substrate alternately using PZT(30/70), PZT(70/30) and BFO alkoxide solutions. The structural and ferroelectric properties were investigated for uncooled infrared detector applications. The coating and heating procedure was repeated six times to form BFO/PZT multilayer films. All films showed the typical XRD patterns of the perovskite polycrystalline structure without presence of the second phase such as Bi2Fe4O3. The thickness of BFO/PZT multilayer film was about 200–220 nm. The ferroelectric properties such as dielectric constant, remnant polarization and pyroelectric coefficient were superior to those of single composition BFO film, and those values for BFO/PZT(70/30) multilayer film were 288, 15.7 μC/cm2 and 9.1 × 10?9 C/cm2 K at room temperature, respectively. Leakage current density of the BFO/PZT(30/70) multilayer film was 3.3 × 10?9 A/cm2 at 150 kV/cm. The figures of merit, FV for the voltage responsivity and FD for the specific detectivity, of the BFO/PZT(70/30) multilayer film were 6.17 × 10?11 Ccm/J and 6.45 × 10?9 Ccm/J, respectively.  相似文献   

16.
The oxynitridation of biomedical titanium metal under a precisely regulated oxygen partial pressure (PO2) of 10? 14 Pa in nitrogen atmosphere at 973 K for 1 h strongly enhanced apatite formation compared with that on Ti heated in air. The factors governing the high apatite-forming ability are discussed from the viewpoint of the surface properties of Ti heated under a PO2 of 10? 14 Pa in nitrogen atmosphere determined from X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and zeta potential measurements. Nitrogen (N)-doped TiO2 (interstitial N) was formed on pure Ti heated under a PO2 of 10? 14 Pa in nitrogen atmosphere at 973 K. The XPS O1s main peak shifted toward a lower binding energy upon heating under a PO2 of 10? 14 Pa. This shift may be due to the formation of oxygen vacancies. This Ti surface had a positive zeta potential of approximately 20 mV. According to time-of-flight secondary ion mass spectroscopy results, PO43 ? ions were predominantly adsorbed on Ti soaked in simulated body fluid (SBF) after heat treatment, followed by calcium ions. It was concluded that the apatite formation kinetics can be described using the Avrami–Erofeev equation with an Avrami index of n = 2, which implies the instantaneous nucleation of apatite on the surface of Ti soaked in SBF after heat treatment at 973 K under a PO2 of 10? 14 Pa.  相似文献   

17.
We have studied the influence of oxygen partial pressure (OPP; 250 mTorr–1 × 10?5 Torr) and Fe doping (2 and 4 at.%) on structural and electrical properties of TiO2 thin films on LaAlO3 substrates. X-ray photoelectron spectroscopy suggests that Fe is not in metal cluster form. It is found that the evolution of the three phases; anatase, rutile and brookite of TiO2 as well as the magneli phase (TinO2n?1) strongly depends on the OPP and Fe doping concentration. All the films grown at 250 mTorr show insulating behavior, whereas films grown at 1 × 10?2 and 1 × 10?4 Torr reveal high temperature metallic to low temperature semiconducting transition. Interestingly, films deposited at 1 × 10?5 Torr reveal charge ordering, which is contributed to the magneli phase of TiO2. The present study suggests that functionality of TiO2 thin film based devices can be tuned by properly selecting the OPP and dopant concentration.  相似文献   

18.
A novel potentiometric urea biosensor has been fabricated with urease (Urs) immobilized multi-walled carbon nanotubes (MWCNTs) embedded in silica matrix deposited on the surface of indium tin oxide (ITO) coated glass plate. The enzyme Urs was covalently linked with the exposed free –COOH groups of functionalized MWCNTs (F-MWCNTs), which are subsequently incorporated within the silica matrix by sol–gel method. The Urs/MWCNTs/SiO2/ITO composite modified electrode was characterized by Fourier transform infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA) and UV–visible spectroscopy. The morphologies and electrochemical performance of the modified Urs/MWCNTs/SiO2/ITO electrode have been investigated by scanning electron microscopy (SEM) and potentiometric method, respectively. The synergistic effect of silica matrix, F-MWCNTs and biocompatibility of Urs/MWCNTs/SiO2 made the biosensor to have the excellent electro catalytic activity and high stability. The resulting biosensor exhibits a good response performance to urea detection with a wide linear range from 2.18 × 10? 5 to 1.07 × 10? 3 M urea. The biosensor shows a short response time of 10–25 s and a high sensitivity of 23 mV/decade/cm2.  相似文献   

19.
The Judd–Ofelt theory has been applied to analyze absorption spectra of Ho3+ ion in HoAl3(BO3)4 measured in spectral range 300–700 nm at room temperature. The Judd–Ofelt spectroscopic parameters have been determined as: Ω2 = 18.87 × 10−20 cm2, Ω4 = 17.04 × 10−20 cm2, Ω6 = 9.21 × 10−20 cm2. These parameters have been used to calculate radiative lifetimes and branching ratios of the luminescence manifolds. Three luminescent bands were found in the spectral range 450–700 nm ascribed to transitions from the 5F5, (5F4, 5S2) and 3K8 states to the ground state 5I8. Experimental intensities of these luminescence transitions were compared with those calculated by using Judd–Ofelt theory and the system of kinetic equations for populations of starting luminescing states. Probabilities of radiativeless transitions were evaluated from this comparison.  相似文献   

20.
Highly uniform and well-dispersed cerium oxide quantum dots were successfully synthesized by simple precipitation method by using cerium ammonium nitrate and ammonium hydroxide as precursor materials with suitable conditions. The X-ray diffraction pattern indicates the formation of cubic phase CeO2. The average particle size of cerium oxide from high resolution transmission electron microscopy (HRTEM) was found to be 3 nm. The X-ray photoelectron (XPS) spectrum confirms the presence of Ce3+ in CeO2. Optical studies by UV–vis spectroscopy for the synthesized CeO2 nanoparticles exhibit a blue shift (Eg = 3.78 eV) with respect to the bulk material (Eg = 3.15 eV) due to quantum confined exciton absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号