首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sheng  Jian  Zhu  Sheng  Jia  Guodong  Liu  Xu  Li  Yan 《Nano Research》2021,14(12):4541-4547

Bifunctional electrocatalysts with high activity toward both oxygen reduction and evolution reaction are highly desirable for rechargeable Zn-air batteries. Herein, a kind of carbon nanotube (CNT) supported single-site Fe-N-C catalyst was fabricated via pyrolyzing in-situ grown Fe-containing zeolitic imidazolate frameworks on CNTs. CNTs not only serve as the physical supports of the Fe-N-C active sites but also provide a conductive network to facilitate the fast electron and ion transfer. The as-synthesized catalysts exhibit a half-wave potential of 0.865 V for oxygen reduction reaction and a low overpotential of 0.442 V at 10 mA·cm−2 for oxygen evolution, which is 310 mV smaller than that of Fe-N-C without CNTs. The rechargeable Zn-air batteries fabricated with such hybrid catalysts display a high peak power density of 182 mW·cm−2 and an excellent cycling stability of over 1,000 h at 10 mA·cm−2, which outperforms commercial Pt-C and most of the reported catalysts. This facile strategy of combining single-site Metal-N-C with CNTs network is effective for preparing highly active bifunctional electrocatalysts.

  相似文献   

2.
Meng  Zihan  Chen  Neng  Cai  Shichang  Wu  Jiawei  Wang  Rui  Tian  Tian  Tang  Haolin 《Nano Research》2021,14(12):4768-4775

The rational design and construction of hierarchically porous nanostructure for oxygen reduction reaction (ORR) electrocatalysts is crucial to facilitate the exposure of accessible active sites and promote the mass/electron transfer under the gas-solid-liquid triple-phase condition. Herein, an ingenious method through the pyrolysis of creative polyvinylimidazole coordination with Zn/Fe salt precursors is developed to fabricate hierarchically porous Fe-N-doped carbon framework as efficient ORR electrocatalyst. The volatilization of Zn species combined with the nanoscale Kirkendall effect of Fe dopants during the pyrolysis build the hierarchical micro-, meso-, and macroporous nanostructure with a high specific surface area (1,586 m2·g−1), which provide sufficient exposed active sites and multiscale mass/charge transport channels. The optimized electrocatalyst exhibits superior ORR activity and robust stability in both alkaline and acidic electrolytes. The Zn-air battery fabricated by such attractive electrocatalyst as air cathode displays a higher peak power density than that of Pt/C-based Zn-air battery, suggesting the great potential of this electrocatalyst for Zn-air batteries.

  相似文献   

3.
Wang  Xuemin  Liu  Ming  Zhang  Hang  Yan  Sihao  Zhang  Cui  Liu  Shuangxi 《Nano Research》2021,14(12):4569-4576

Despite the extensive application of porous nanostructures as oxygen electrocatalysts, it is challenging to synthesize single-metal state materials with porous structures, especially the ultrasmall ones due to the uniform diffusion of the same metal. Herein, we pioneer demonstrate a new size effect-based controllable synthesis strategy for the homogeneous Co nanokarstcaves assisted by Co-CN hybrids (CCHs). The preferential migration of cobalt atoms on the surface of small size zeolitic imidazolate framework (ZIF) with high surface energy during pyrolysis is the key factor for the formation of nanokarstcave structure. Furthermore, graphene can act as a diffusion barrier to prevent the agglomeration of nanoparticles in the synthesis process, which also plays an important role in the formation of porous nanostructures. In alkali media, CCHs achieve overpotential of 287 mV (@10 mA·cm−2) for oxygen evolution reaction (OER) and a half wave potential of 0.86 V (vs. RHE) for oxygen reduction reaction (ORR).

  相似文献   

4.
The demand for high-performance non-precious-metal electrocatalysts to replace the noble metal-based catalysts for oxygen reduction reaction(ORR)is intensively increasing.Herein,single-atomic copper sites supported on N-doped three-dimensional hierarchically porous carbon catalyst(Cu1/NC)was prepared by coordination pyrolysis strategy.Remarkably,the Cu1/NC-900 catalyst not only exhibits excellent ORR performance with a half-wave potential of 0.894 V(vs.RHE)in alkaline media,outperforming those of commercial Pt/C(0.851 V)and Cu nanoparticles anchored on N-doped porous carbon(CuNPs/NC-900),but also demonstrates high stability and methanol tolerance.Moreover,the Cu1/NC-900 based Zn-air battery exhibits higher power density,rechargeability and cyclic stability than the one based on Pt/C.Both experimental and theoretical investigations demonstrated that the excellent performance of the as-obtained Cu1/NC-900 could be attributed to the synergistic effect between copper coordinated by three N atoms active sites and the neighbouring carbon defect,resulting in elevated Cu d-band centers of Cu atoms and facilitating intermediate desorption for ORR process.This study may lead towards the development of highly efficient non-noble metal catalysts for applications in electrochemical energy conversion.  相似文献   

5.
Core-shell hybrid nanomaterials have shown new properties and functions that are not attainable by their single counterparts.Nanoscale confinement effect by porous inorganic shells in the hybrid nanostructures plays an important role for chemical transformation of the core nanoparticles.However,metal-organic frameworks(MOFs)have been rarely applied for understanding mechanical insight into such nanoscale phenomena in confinement,although MOFs would provide a variety of properties for the confining environment than other inorganic shells such as silica and zeolite.Here,we examine chemical transformation of a gold nanorod core enclosed by a zeolitic imidazolate framework(ZIF)through chemical etching and regrowth,followed by quantitative analysis in the core dimension and curvature.We find the nanorod core shows template-effective behavior in its morphological transformation.In the etching event,the nanorod core is spherically carved from its tips.The regrowth on the spherically etched core inside the ZIF gives rise toformation of a raspberry-like branched nanostructure in contrast to the growth of an octahedral shape in bulk condition.We attribute the shell-directed regrowth to void space generated at the interfaces between the etched core and the ZIF shell,intercrystalline gaps in mult-domain ZIF shells,and local structural deformation from the acidic reaction conditions.  相似文献   

6.
While metal nanoparticles(NPs)have shown great promising applications as heterogeneous catalysts,their agglomeration caused by thermodynamic instability is detrimental to the catalytic performance.To tackle this hurdle,we successfully prepared a functional and stable porphyrinic metal-organic framework(MOF),PCN-224-RT,as a host for encapsulating metal nanoparticles by direct stirring at room temperature.As a result,Pt@PCN-224-RT composites with well-dispersed Pt NPs can be constructed by introducing pre-synthesized Pt NPs into the precursor solution of PCN-224-RT.Of note,the rapid and simple stirring method in this work is more in line with the requirements of environmental friendly and industrialization compared with traditional solvothermal methods.  相似文献   

7.
Ren  Yumei  Yu  Chengbing  Chen  Zhonghui  Xu  Yuxi 《Nano Research》2021,14(6):2023-2036

As a promising graphene analogue, two-dimensional (2D) polymer nanosheets with unique 2D features, diversified topological structures and as well as tunable electronic properties, have received extensive attention in recent years. Here in this review, we summarized the recent research progress in the preparation methods of 2D polymer nanosheets, mainly including interfacial polymerization and solution polymerization. We also discussed the recent research advancements of 2D polymer nanosheets in the fields of energy storage and conversion applications, such as batteries, supercapacitors, electrocatalysis and photocatalysis. Finally, on the basis of their current development, we put forward the existing challenges and some personal perspectives.

  相似文献   

8.
Hu  Zheng  Yuan  Tingbiao  Li  Hui  Qiu  Yishu  Zhou  Wei  Zhang  Jiangwei  Zhao  Yuxin  Hu  Shi 《Nano Research》2021,14(12):4795-4801

Two-dimensional (2D) oxide can be continuously produced by bubbling oxygen into liquid metals and the harvesting of these oxide relies on the proper choice of dispersion solvents. The mass-production of ligand-free 2D materials from high melting-point metals will not be possible if the limited stability of the traditional dispersion solvents is not circumvented. Herein, liquid tin was used for the first time in the bubbling protocol and 2D tin oxide was obtained in molten salts. The nanosheets were studied with combined microscopic and spectroscopic techniques, and high-density grain boundaries was identified between the sub-5-nm nano-crystallites in the nanosheets. It gives rise to the high performance in electrocatalytic CO2 reduction reaction. Density-functional-theory based calculation was applied to achieve a deeper understanding of the relationship between the activity, selectivity, and the grain-boundary features. The molten-salt based protocol could be explored for the synthesis of a library of functional 2D oxides.

  相似文献   

9.
Yang  Zhengkun  Wang  Xiaolin  Zhu  Mengzhao  Leng  Xinyan  Chen  Wenxing  Wang  Wenyu  Xu  Qian  Yang  Li-Ming  Wu  Yuen 《Nano Research》2021,14(12):4512-4519

An efficient preparation and local coordination environment regulation of isolated single-atom sites catalysts (ISASC) for improved activity is still challenging. Herein, we develop a solid phase thermal diffusion strategy to synthesize Mn ISASC on highly uniform nitrogen-doped carbon nanotubes by employing MnO2 nanowires@ZIF-8 core-shell structure. Under high-temperature, the Mn species break free from core-MnO2 lattice, which will be trapped by carbon defects derived from shell-ZIF-8 carbonization, and immobilized within carbon substrate. Furthermore, the poly-dispersed Mn sites with two nitrogen-coordinated centers can be controllably renovated into four-nitrogen-coordinated Mn sites using NH3 treatment technology. Both experimental and computational investigations indicate that the symmetric coordinated Mn sites manifest outstanding oxygen reduction activity and superior stability in alkaline and acidic solutions. This work not only provides efficient way to regulate the coordination structure of ISASC to improve catalytic performance but also paves the way to reveal its significant promise for commercial application.

  相似文献   

10.
Optical manipulation of micro/nanoscale objects is of importance in life sciences,colloidal science,and nanotechnology.Optothermal tweezers exhibit superior manipulation capability at low optical intensity.However,our implicit understanding of the working mechanism has limited the further applications and innovations of optothermal tweezers.Herein,we present an atomistic view of opto-thermo-electro-mechanic coupling in optothermal tweezers,which enables us to rationally design the tweezers for optimum performance in targeted applications.Specifically,we have revealed that the non-uniform temperature distribution induces water polarization and charge separation,which creates the thermoelectric field dominating the optothermal trapping.We further design experiments to systematically verify our atomistic simulations.Guided by our new model,we develop new types of optothermal tweezers of high performance using low-concentrated electrolytes.Moreover,we demonstrate the use of new tweezers in opto-thermophoretic separation of colloidal particles of the same size based on the difference in their surface charge,which has been challenging for conventional optical tweezers.With the atomistic understanding that enables the performance optimization and function expansion,optothermal tweezers will further their impacts.  相似文献   

11.
The concept of“robust dynamics”describes the incorporation of mechanically interlocked molecules(MIMs)into metal-organic framework(MOF)materials such that large amplitude motions(e.g.,rotation or translation of a macrocycle)can occur inside the free volume pore of the MOF.To aid in the preparation of such materials,reticular synthesis was used herein to design rigid molecular building blocks with predetermined ordered structures starting from the well-known MOF NOTT-101.New linkers were synthesized that have a T-shape,based on a triphenylene tetra-carboxylate strut,and their incorporation into Cu(II)-based MOFs was investigated.The single-crystal structures of three new MOFs,UWCM-12(fof),β-UWCM-13(loz),UWCM-14(lil),with naked T-shaped linkers were determined;β-UWCM-13 is the first reported example of the loz topology.A fourth MOF,UWDM-14(lil)is analogous to UWCM-14(lil)but contains a[2]rotaxane linker.Variable-temperature,2H solid-state NMR was used to probe the dynamics of a 24-membered macrocycle threaded onto the MOF skeleton.  相似文献   

12.
Mao  Xi  Li  Hao  Kim  Jinwoo  Deng  Shuai  Deng  Renhua  Kim  Bumjoon J.  Zhu  Jintao 《Nano Research》2021,14(12):4644-4649

A solvent annealing-induced structural reengineering approach is exploited to fabricate polymersomes from block copolymers that are hard to form vesicles through the traditional solution self-assembly route. More specifically, polystyrene-b-poly(4-vinyl pyridine) (PS-b-P4VP) particles with sphere-within-sphere structure (SS particles) are prepared by three-dimensional (3D) soft-confined assembly through emulsion-solvent evaporation, followed by 3D soft-confined solvent annealing upon the SS particles in aqueous dispersions for structural engineering. A water-miscible solvent (e.g., THF) is employed for annealing, which results in dramatic transitions of the assemblies, e.g., from SS particles to polymersomes. This approach works for PS-b-P4VP in a wide range of block ratios. Moreover, this method enables effective encapsulation/loading of cargoes such as fluorescent dyes and metal nanoparticles, which offers a new route to prepare polymersomes that could be applied for cargo release, diagnostic imaging, and nanoreactor, etc.

  相似文献   

13.
Jiang  Huaning  Zhang  Peng  Wang  Xingguo  Gong  Yongji 《Nano Research》2021,14(6):1789-1801

The development of magnetic two-dimensional (2D) materials in its infancy has generated an enormous amount of attention as it offers an ideal platform for the exploration of magnetic properties down to the 2D limit, paving the way for spintronic devices. Due to the nonnegligible advantages including time efficiency and simplified process, the facile bottom-up chemical vapor deposition (CVD) is regarded as a robust method to fabricate ultrathin magnetic nanosheets. Recently, some ultrathin magnets possessing fascinating properties have been successfully synthesized via CVD. Here, the recent researches toward magnetic 2D materials grown by CVD are systematically summarized with special emphasis on the fabrication methods. Then, heteroatoms doping and phase transition induced in CVD growth to bring or tune the magnetic properties in 2D materials are discussed. Characterizations and applications of these magnetic materials are also discussed and reviewed. Finally, some perspectives in need of urgent attention regarding the development of CVD-grown magnetic 2D materials are proposed.

  相似文献   

14.
Li  Jing  Zhao  Jie  Li  Shengqiang  Chen  Yang  Lv  Weiqiang  Zhang  Jiahui  Zhang  Libing  Zhang  Zhen  Lu  Xiaoquan 《Nano Research》2021,14(12):4689-4695

The metal—organic frameworks (MOFs) are expected as ideal biomimetic enzymes for colorimetric glucose detection because of their large surface areas, well defined pore structures, tunable chemical composition, and multi-functional sites. However, the intrinsically chemical instability and low mimetic enzyme activity of MOFs hinder the application of them in imitating the enzyme reactions. In this work, we demonstrated a metal-MOF synergistic catalysis strategy, by loading Pt nanoparticles (Pt NPs) on MIL-88B-NH2 (Fe-MOF) to increase peroxidase-like activity for the detection of glucose. The induced electrons transfer from Pt atom to Fe atom accelerated the redox cycling of Fe3+/Fe2+, improved the overall efficiency of the peroxidase-like reaction, and enabled the efficient and robust colorimetric glucose detection, which was proved by both experiments and density functional theory (DFT) calculation. Additionally, the sensitivity and chemical stability of this synergistic effect strategy to detect the glucose are not affected by the complex external factors, which represented a great potential in fast, easy, sensitive, and specific recognition of clinical diabetes.

  相似文献   

15.
Synthetic materials with tunable mechanical properties have great potential in soft robotics and biomedical engineering.However,current materials are limited to the mechanical duality altering their mechanical properties only between soft and hard states and lack of consecutively programmable mechanics.Herein,the magnetic-programmable organohydrogels with heterogeneous dynamic architecture are designed by encasing oleophilic ferrofluid droplets into hydrogel matrix.As magnetic field increases,the mechanical properties of organohydrogels can be consecutively modulated owing to the gradual formation of chain-like assembly structures of nanoparticles.The storage modulus G'increases by 2.5 times when magnetic field goes up to 0.35 T.Small-Angle X-ray Scattering(SAXS)confirms the reconfigurable orientation of nanoparticles and the organohydrogels show reversible modulus switching.Besides,the materials also exhibit high stretchability,magnetic actuation behavior and effective self-healing capability.Furthermore,the organohydrogels are applied into the design of effectors with mechanical adaptivity.When subjected to serious external perturbations,the effector can maintain mechanical homeostasis by regulating modulus of organohydrogel under applied magnetic field.Such materials are applicable to homeostatic systems with mechanically adaptive behaviors and programmed responses to external force stimuli.  相似文献   

16.
Sun  Danping  Tan  Zhi  Tian  Xuzheng  Ke  Fei  Wu  Yale  Zhang  Jin 《Nano Research》2021,14(12):4370-4385

The development of rechargeable lithium-ion batteries (LIBs) is being driven by the ever-increasing demand for high energy density and excellent rate performance. Charge transfer kinetics and polarization theory, considered as basic principles for charge regulation in the LIBs, indicate that the rapid transfer of both electrons and ions is vital to the electrochemical reaction process. Graphene, a promising candidate for charge regulation in high-performance LIBs, has received extensive investigations due to its excellent carrier mobility, large specific surface area and structure tunability, etc. Recent progresses on the structural design and interfacial modification of graphene to regulate the charge transport in LIBs have been summarized. Besides, the structure-performance relationships between the structure of the graphene and its dedicated applications for LIBs have also been clarified in detail. Taking graphene as a typical example to explore the mechanism of charge regulation will outline ways to further understand and improve carbon-based nanomaterials towards the next generation of electrochemical energy storage devices.

  相似文献   

17.
Yin  Peiqun  Wu  Geng  Wang  Xiaoqian  Liu  Shoujie  Zhou  Fangyao  Dai  Lei  Wang  Xin  Yang  Bo  Yu  Zhen-Qiang 《Nano Research》2021,14(12):4783-4788

The rational fabrication of highly efficient electrocatalysts with low cost toward oxygen evolution reaction (OER) is greatly desired but remains a formidable challenge. In this work, we present a facile and straightforward method of incorporating NiCo-layered double hydroxide (NiCo-LDH) into GO-dispersed CNTs (GO-CNTs) with interconnected configuration. X-ray absorption spectroscopy (XAS) reveals the strong electron interaction between NiCo-LDH and the underlying GO-CNTs substrate, which is supposed to facilitate charge transfer and accelerate the kinetics for OER. By tuning the amount of CNTs, the optimized NiCo-LDH/GO-CNTs composite can achieve a low overpotential of 290 mV at 10 mA·cm−2 current density, a small Tafel slope of 66.8 mV·dec−1 and robust stability, superior to the pure NiCo-LDH and commercial RuO2 in alkaline media. The preeminent oxygen evolution performance is attributed to the synergistic effect stemming from the merits and the intimate electron interaction between LDH and GO-CNTs. This allows NiCo-LDH/GO-CNTs to be potentially applied in an industrial non-noble metal-based water electrolyzer as the anodic catalysts.

  相似文献   

18.
Developing antibiotics-independent antibacterial agents is of great importance since antibiotic therapy faces great challenges from drug resistance.Graphene oxide(GO)is a promising agent due to its natural antibacterial mechanisms,such as sharp edgemediated cutting effect.However,the antibacterial activity of GO is limited by its negative charge and low photothermal effect.Herein,the amino-functionalized GO nanosheets(AGO)with unique three-in-one properties were synthesized.Three essential properties(positive charge,strong photothermal effect,and natural cutting effect)were integrated into AGO.The positive charge(30 mV)rendered AGO a strong interaction force with model pathogen Streptococcus mutans(330 nN).The natural cutting effect of 100 ng·mL-1AGO caused 27%loss of bacterial viability after incubation for 30 min.Most importantly,upon the near-infrared irradiation for just 5 min,the three-in-one properties of AGO caused 98%viability loss.In conclusion,the short irradiation period and the tunable antibacterial activity confer the three-in-one AGO a great potential for clinical use.  相似文献   

19.
Zhang  Zhi-Cheng  Li  Yi  Wang  Jing-Jing  Qi  De-Han  Yao  Bin-Wei  Yu  Mei-Xi  Chen  Xu-Dong  Lu  Tong-Bu 《Nano Research》2021,14(12):4591-4600

Graphdiyne (GDY) is emerging as a promising material for various applications owing to its unique structure and fascinating properties. However, the application of GDY in electronics and optoelectronics are still in its infancy, primarily owing to the huge challenge in the synthesis of large-area and uniform GDY film for scalable applications. Here a modified van der Waals epitaxy strategy is proposed to synthesize wafer-scale GDY film with high uniformity and controllable thickness directly on graphene (Gr) surface, providing an ideal platform to construct large-scale GDY/Gr-based optoelectronic synapse array. Essential synaptic behaviors have been realized, and the linear and symmetric conductance-update characteristics facilitate the implementation of neuromorphic computing for image recognition with high accuracy and strong fault tolerance. Logic functions including “NAND” and “NOR” are integrated into the synapse which can be executed in an optical pathway. Moreover, a visible information sensing-memory-processing system is constructed to execute real-time image acquisition, in situ image memorization and distinction tasks, avoiding the time latency and energy consumption caused by data conversion and transmission in conventional visual systems. These results highlight the potential of GDY in applications of neuromorphic computing and artificial visual systems.

  相似文献   

20.
The aging characteristics,e.g.,the evolution of efficiency and luminance of quantum-dot light-emitting diodes(QLEDs)are greatly affected by the encapsulation.When encapsulated with ultraviolet curable resin,the efficiency is increased over time,a known phenomenon termed as positive aging which remains one of the unsolved mysteries.By developing a physical model and an analytical model,we identify that the efficiency improvement is mainly attributed to the suppression of hole leakage current that is resulted from the passivation of ZnMgO defects.When further encapsulated with desiccant,the positive aging effect vanishes.Tofully take the advantage of positive aging,the desiccant is incorporated after the positive aging process is completed.With the new encapsulation method,the QLED exhibits a high external quantum efficiency of 20.19%and a half lifetime of 1,267 h at an initial luminance of 2,800 cd·m-2,which are improved by 1.4 and 6.0 folds,respectively,making it one of the best performing devices.Our work provides an in-depth and systematic understanding of the mechanism of positive aging and offers a practical encapsulation way for realizing efficient and stable QLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号