首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the robotic manipulation context, end-effector contact forces may be difficult to measure mainly due to the tool dynamic interferences such as the inertial forces. In this paper, a whole methodology is proposed to estimate these forces. The new approach is based on a sensor fusion technique that integrates the information of a wrist force sensor, of a 3D accelerometer placed at the robot tool and the joint position sensors measurements. The proposed methodology not only offers a suitable estimator in terms of response and filtering, but also presents a self-calibrating feature that allows an easy integration into any industrial setup. To experimentally validate the performance of the proposed methodology, two different industrial manipulators were used: an ABB robot and a Stäubli robot, both with open control system architectures. An impedance control scheme was used as force/position control law to demonstrate the need and results of the proposed calibration result.  相似文献   

2.
In this paper, we address the tracking problem of distributed force/position for networked robotic manipulators in the presence of dynamic uncertainties. The end-effectors of the manipulators are in contact with flat compliant environment with uncertain stiffness and distance. The control objective is that the robotic followers track the convex hull spanned by the leaders under directed graphs. We propose a distributed adaptive force control scheme with an adaptive force observer to achieve the asymptotic force synchronization in constrained space, which also maintains a cascaded closed-loop structure separating the system into kinematic module and dynamic module. A decentralized stiffness updating law is also proposed to deal with the environment uncertainties. The convergence of tracking errors of force and position is proved using Lyapunov stability theory and input-output stability analysis tool. Finally, simulations are performed to show effectiveness of the theoretical approach.   相似文献   

3.
Contact force and torque sensing approaches enable manipulators to cooperate with humans and to interact appropriately with unexpected collisions. In this paper, a mode-switching moving average with variable time period is proposed to reduce the effects of measured motor current noise and thus provide improved confidence in joint output torque estimation. The time period of the filter adapts continuously to achieve optimal tradeoff between response time and precision of estimation in real-time. An adaptive Kalman filter that consists of the proposed moving average and the classical Kalman filter is proposed. Calibration routines for the adaptive Kalman filter take the measured motor current noise and errors in the speed data from the individual joints into account. The combination of the proposed adaptive Kalman filter with variable time period and its calibration method facilitates force and torque estimation without force/torque sensors. Contact force/torque sensing and response time assessments from the proposed approach were performed on the Universal Robot 5 manipulator with differing unexpected end effector loads. The combined force and torque sensing method led to a reduction of the estimation errors and response time in comparison with the pioneering method, and the effect is further improved as the payload rises. The proposed method can be applied to any robotic manipulators as long as the motor information (current, joint position, and joint velocities) are available and consequently the cost will be reduced dramatically from methods that require load cells.  相似文献   

4.
改进幂次趋近律的机械臂滑模控制律设计   总被引:1,自引:0,他引:1  
针对机械臂滑模控制中存在的抖振问题,采用趋近律的方法来进行改善,在对机械臂的控制特点和常用的滑模趋近律进行分析的基础上,针对幂次趋近律的缺点,提出了一种改进的幂次趋近律,并对其趋近性能进行了分析;根据机械臂动力学模型和改进的幂次趋近律设计了相应的滑模控制策略,对其控制策略的位置跟踪特性和抖振消除能力等进行了验证;仿真结果表明,该控制策略不仅有效地抑制了机械臂滑模控制中的抖振问题,而且保证了机械臂系统对期望轨迹的快速跟踪性,具有更好的趋近特性和收敛特性。  相似文献   

5.
Dynamic coordinated control of two robot manipulators that rigidly grasp a common object is studied. A dynamic coordinated control model for the two manipulators is derived that is suitable for system analysis and design in state space. The model takes into account kinematic and dynamic constraints between the two manipulators, and is explicitly described by non-linear state equtions and non-linear output equations in the state space. Since coordinated control requires the control of forces applied to the object by manipulators, the output equations include both position components and force components. While robotic systems with position outputs can be linearized using a static state feedback, systems with force outputs, such as the present two robot system, require a dynamic non-linear state feedback for exact linearization. By using dynamic non-linear feedback, coordinated control of two robotic manipulators is converted into a control problem of linear systems.  相似文献   

6.
This article presents a new adaptive outer-loop approach for explicit force regulation of position-controlled robot manipulators. The strategy is computationally simple and does not require knowledge of the manipulator dynamic model, the inner-loop position controller parameters, or the environment. It is shown that the control strategy guarantees global uniform boundedness of all signals and convergence of the position/force regulation errors to zero when applied to the full nonlinear robot dynamic model. If bounded external disturbances are present, a slight modification to the control scheme ensures that global uniform boundedness of all signals is retained and that arbitrarily accurate stabilization of the regulation errors can be achieved. Additionally, it is shown that the adaptive controller is also applicable to robotic systems with PID inner-loop position controllers. Computer simulation results are given for a Robotics Research Corporation (RRC) Model K-1207 redundant arm and demonstrate that accurate and robust force control is achievable with the proposed controller. Experimental results are presented for the RRC Model K-1207 robot and confirm that the control scheme provides a simple and effective means of obtaining high-performance force control. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
This paper presents a noncertainty equivalent adaptive motion control scheme for robot manipulators in the absence of link velocity measurements. A new output feedback adaptation algorithm, based on the attractive manifold design approach, is developed. A proportional-integral adaptation is selected for the adaptive parameter estimator to strengthen the passivity of the system. In order to relieve velocity measurements, an observer is designed to estimate the velocities. The controller guarantees semiglobal asymptotic motion tracking and velocity estimation, as well as L and L2 bounded parameter estimation error. The effectiveness of the proposed controller is verified by simulations for a two-link robot manipulator and a four-bar linkage. The results are further compared with the earlier certainty-equivalent adaptive partial and full state feedback controller to highlight potential closed-loop performance improvements.  相似文献   

8.
Chian-Song  Kuang-Yow  Tsu-Cheng 《Automatica》2004,40(12):2111-2119
In the presence of uncertain constraint and robot model, an adaptive controller with robust motion/force tracking performance for constrained robot manipulators is proposed. First, robust motion and force tracking is considered, where a performance criterion containing disturbance and estimated parameter attenuations is presented. Then the proposed controller utilizes an adaptive scheme and an auxiliary control law to deal with the uncertain environmental constraint, disturbances, and robotic modeling uncertainties. After solving a simple linear matrix inequality for gain conditions, the effect from disturbance and estimated parameter errors to motion/force errors is attenuated to an arbitrary prescribed level. Moreover, if the disturbance and estimated parameter errors are square-integrable, then an asymptotic motion tracking is achieved while the force error is as small as the inversion of control gain. Finally, numerical simulation results for a constrained planar robot illustrate the expected performance.  相似文献   

9.
This article presents a decentralized control scheme for the complex problem of simultaneous position and internal force control in cooperative multiple manipulator systems. The proposed controller is composed of a sliding mode control term and a force robustifying term to simultaneously control the payload's position/orientation as well as the internal forces induced in the system. This is accomplished independently of the manipulators dynamics. Unlike most controllers that do not require prior knowledge of the manipulators dynamics, the suggested controller does not use fuzzy logic inferencing and is computationally inexpensive. Using a Lyapunov stability approach, the controller is proven to be robust in the face of varying system's dynamics. The payload's position/orientation and the internal force errors are also shown to asymptotically converge to zero under such conditions.  相似文献   

10.
In this study, a new adaptive synchronised tracking control approach is developed for the operation of multiple robotic manipulators in the presence of uncertain kinematics and dynamics. In terms of the system synchronisation and adaptive control, the proposed approach can stabilise position tracking of each robotic manipulator while coordinating its motion with the other robotic manipulators. On the other hand, the developed approach can cope with kinematic and dynamic uncertainties. The corresponding stability analysis is presented to lay a foundation for theoretical understanding of the underlying issues as well as an assurance for safely operating real systems. Illustrative examples are bench tested to validate the effectiveness of the proposed approach. In addition, to face the challenging issues, this study provides an exemplary showcase with effectively to integrate several cross boundary theoretical results to formulate an interdisciplinary solution.  相似文献   

11.
Force Control of Robotic Manipulators Using a Fuzzy Predictive Approach   总被引:3,自引:0,他引:3  
This paper proposes a force control strategy for robotic manipulators considering a non-rigid environment described by a nonlinear model. This approach uses a fuzzy predictive algorithm to generate, in an optimal way, the reference or virtual position to the classical impedance controller in order to apply a desired force profile on the environment. The main advantage of this control strategy is the possibility of including a nonlinear model of the environment in the controller design in a straightforward way, improving the global force control performance, especially in non-rigid environments. Moreover, in order to reduce the oscillations on the optimized reference position a fuzzy scaling machine is included on the force control strategy. The performance of the force control scheme is illustrated for a two degree-of-freedom PUMA 560 robot, which end-effector is forced to move along a flat surface located on the vertical plane. The simulation results obtained with the fuzzy control scheme reveal significant improvement in the force tracking performance, when compared to the impedance control with force tracking in non-rigid environments.  相似文献   

12.
In this paper, an adaptive neural network (NN) switching control strategy is proposed for the trajectory tracking problem of robotic manipulators. The proposed system comprises an adaptive switching neural controller and the associated robust compensation control law. Based on the Lyapunov stability theorem and average dwell-time approach, it is shown that the proposed control scheme can guarantee tracking performance of the robotic manipulators system, in the sense that all variables of the closed-loop system are bounded and the effect due to the external disturbance and approximate error of radical basis function (RBF) NNs on the tracking error can be converged to zero in an infinite time. Finally, simulation results on a two-link robotic manipulator show the feasibility and validity of the proposed control scheme.  相似文献   

13.
冗余驱动并联机械手的混合位置/力自适应控制   总被引:5,自引:0,他引:5  
针对冗余驱动并联机构研究一种自适应的混合位置/力控制算法.基于并联机构中约束 子流形的几何性质,将冗余驱动并联机构的逆动力学自然投影到位形空间和约束力空间.基于投 影方程,提出一种统一的具有渐进稳定性的自适应混合位置/力控制算法.采用最小二范数准则 求解冗余解问题,实现了实际驱动关节力矩的优化.仿真结果验证了控制方法的有效性.  相似文献   

14.
This paper presents a new adaptive-robust control law for robot manipulators with parametric uncertainty. Stability of the uncertain system has been guaranteed using the Lyapunov theory and the control law is derived by means of analytical approach. In this scheme, the manipulator parameters are determined with an estimation law, and both adaptive gain and additional control input are also updated as a function of the estimated value. The proposed adaptive control input includes a parameter estimation law as an adaptive controller and an additional control input vector as a robust controller. The developed approach has the advantages of both adaptive and robust control laws, and besides it eliminates the disadvantages of them.  相似文献   

15.
In this article, we give some comments on the article ‘A new terminal sliding mode control for robotic manipulators’. The article presents a new terminal sliding mode control approach for global finite-time tracking of robotic manipulators. We point out a serious error occurred through the article, leading to the ineffectiveness of the proposed approach. A correction is proposed. Comparisons are presented.  相似文献   

16.
The question of realization and feedback linearization of a class of differential-algebraic system is considered. Based on nonlinear inversion of an input-output map, an analytical expression for the constraint force vector satisfying the algebraic constraints is derived. In this derivation, certain requirements on the relative degree of the output variables are relaxed. Using a new representation of the system in an extended state space, a control law is derived for the independent control of the chosen output variables satisfying algebraic constraints. These results are applied for the position and force control of robotic manipulators. Simulation results are presented for a three-link robotic arm with revolute joints. It is shown that in the closed-loop system, precise position and force trajectory control is accomplished in spite of uncertainty in the robot parameters.  相似文献   

17.
This paper presents a new approach to adaptive motion control of an important class of robotic systems. The control schemes developed using this approach are very simple and computationally efficient since they do not require knowledge of either the mathematical model or the parameter values of the robotic system dynamics. It is shown that the control strategies are globally stable in the presence of bounded disturbances, and that the size of the tracking errors can be made arbitrarily small. The proposed controllers are very general and are implementable with a wide variety of robotic systems, including both open- and closed-kinematic-chain manipulators. Computer simulation results are given for a seven degree-of-freedom (DOF) Robotics Research Corporation Model K-1607 arm. These results demonstrate that accurate and robust trajectory tracking can be achieved by using the proposed schemes.  相似文献   

18.
This article presents an adaptive scheme for controlling the end-effector impedance of robot manipulators. The proposed control system consists of three subsystems: a simple “filter” that characterizes the desired dynamic relationship between the end-effector position error and the end-effector/environment contact force, an adaptive controller that produces the Cartesian-space control input required to provide this desired dynamic relationship, and an algorithm for mapping the Cartesian-space control input to a physically realizable joint-space control torque. The controller does not require knowledge of either the structure or the parameter values of the robot dynamics and is implemented without calculation of the robot inverse kinematic transformation. As a result, the scheme represents a general and computationally efficient approach to controlling the impedance of both nonredundant and redundant manipulators. Furthermore, the method can be applied directly to trajectory tracking in free-space motion by removing the impedance filter. Computer simulation results are given for a planar four degree-of-freedom redundant robot under adaptive impedance control. These results demonstrate that accurate end-effector impedance control and effective redundancy utilization can be achieved simultaneously by using the proposed controller.  相似文献   

19.
In this study, a new position synchronised control algorithm is developed for multiple robotic manipulator systems. In the merit of system synchronisation and integral sliding mode control, the proposed approach can stabilise position tracking of each robotic manipulator while coordinating its motion with the other manipulators. With the integral sliding mode, the proposed approach has insensitiveness against the lumped system uncertainty within the entire process of operation. Further, a perturbation estimator is proposed to reduce chattering effect. The corresponding stability analysis is presented to lay a foundation for theoretical understanding to the underlying issues as well as safely operating real systems. An illustrative example is bench tested to validate the effectiveness of the proposed approach.  相似文献   

20.
This paper presents a framework for autonomous capture operation of a non-cooperative mobile target in a 3-dimensional workspace using a robotic manipulator with visual servoing. The visual servoing with an eye-in-hand configuration is based on motion predictive control using Kalman filter for the on-line state and parameter estimation of the target. A transitional decision making process is developed to guide the robotic manipulator between the different phases of the capture operation by employing a custom metric that translates visual misalignments between the end-effector and the target into a guidance measurement. These phases include the target acquisition and approach stage and the alignment and capture phase. Experiments have been carried out on a custom designed and built robotic manipulator with 6 degrees of freedom. The objective is to evaluate the performance of the proposed motion predictive control scheme for the autonomous capturing task and to demonstrate the robustness of the proposed control scheme in the presence of noise and unexpected disturbances in vision system, sensory-motor coordination and constraints for the execution in real environments. Experimental results of the visual servoing control scheme integrated with the motion predictive Kalman filter indicate the feasibility and applicability of the proposed control scheme. It shows that when the target motion is properly predicted, the tracking and capture performance has been improved significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号