首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titanium dioxide (TiO2) powders were synthesized by using TiO2 colloidal sol prepared from titanium-tetraisopropoxide (TTIP) and used as a starting material by applying the sol–gel method. The effect of aging times and temperatures on physical and chemical properties of TiO2 sol particles was systematically investigated. The results showed that the crystallinity and average particle size of TiO2 can be successfully controlled by adjusting the aging time and temperature. The samples after calcination of TiO2 powders were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and nitrogen adsorption measurements. In addition, the photocatalytic activity of synthesized TiO2 powders was evaluated by studying the degradation of 10 ppm aqueous methylene blue dye under 32 W high pressure mercury vapor lamp with 100 mg of TiO2 powders. The highest photocatalytic activity was observed in TiO2 powder synthesized at 90 °C for 0 h attributed to the presence of anatase and rutile phases in an 80:20 ratio.  相似文献   

2.
《Materials Research Bulletin》2004,39(4-5):533-543
In this paper, 3.0 mol% lanthanide europium ion modified TiO2 sol (Eu3+–TiO2) was fabricated by chemical coprecipitation–peptization method with TiCl4 as precursor. Eu3+–TiO2 sol particles were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), transmission electron microscope (TEM) and particle size distribution (PSD). Eu3+–TiO2 sol particles prepared at low temperature (70 °C) had anatase semicrystalline structure. Eu3+–TiO2 sol sample homogeneously dispersed in the aqueous medium and presented narrow distribution characterization with 7 nm in mean size. Interfacial adsorption experiment shows that small particle size and positive charge of sol particles contributed to the good adsorption of X-3B dye on the TiO2 surface. The photoelectrochemical property was investigated about electrons transfer efficiency between dye molecule and TiO2 particles. A novel hydrosol reaction system was designed to conduct X-3B photodegradation reaction. The excellent photocatalytic activity for X-3B degradation under visible light irradiation was ascribed to effective scavenging electrons by Eu3+ ion. Moreover, X-3B photocatalytic degradation mechanism under visible light excitation was proposed as photosensitization–photocatalysis.  相似文献   

3.
Spherical and nanoporous TiO2 and TiO2–SiO2 mixed micro-particles with four different compositions (20/80, 50/50, 80/20, 90/10 in weight ratio of TiO2/SiO2) were prepared by spray drying method from colloidal mixtures of amorphous silica and anatase titania nanoparticles. The as-prepared particles were heat-treated at 900 °C for 0.5–5 h. The TiO2 and TiO2–SiO2 particles were spherical in shape and the average particle diameter was about 1 μm. The anatase mass fraction and the specific surface area of TiO2–SiO2 (50 wt.% SiO2) mixed particles were kept to 61.5% and 30.6%, respectively, of their initial values after 5 h heat-treatment whereas these values of TiO2 particles were rapidly decreased to 13.0% and 1.2% of their initial values, respectively, within 30 min after heat-treatment. And the anatase mass fraction and specific surface area increased as SiO2 content in the TiO2–SiO2 mixed particles increased.  相似文献   

4.
《Materials Research Bulletin》2003,38(15):1915-1928
The first structurally characterised titanium and iron isopropoxide, [FeCl{Ti2(OPri)9}] (1), has been used as a single-source precursor for TiO2/Fe2TiO5 composites prepared by the sol–gel route. Two distinct hydrolysis and condensation conditions were employed, followed by drying and thermal treatment up to 1000 °C. Product composition and oxide phase transitions were characterised by powder X-ray diffractometry and Raman, electron paramagnetic resonance, Mössbauer and Fourier-transformed infrared spectroscopies. A mixture of nanometric-size TiO2 (anatase, 3.6–5.8 nm) and amorphous iron(III) oxide was obtained up to 500 °C, while TiO2 (rutile), α-Fe2O3 (hematite) and Fe2TiO5 (pseudobrookite) were found at 700 °C. At 1000 °C, only rutile and pseudobrookite were observed. These results suggest that 1 behaves as a type III single-source precursor. Powders calcined at 1000 °C were analysed for surface morphology, microstructure and elemental composition by scanning electron microscopy/energy dispersive X-ray spectroscopy. Results suggest no phase segregation on a sub-micrometer level. Different morphologies were observed for the materials produced by the N2 route, and this could relate to early crystal growth in an oxygen-deficient environment.  相似文献   

5.
In this study, preparation of SnO2 (0–30 mol% SnO2)–TiO2 dip-coated thin films on glazed porcelain substrates via sol–gel process has been investigated. The effects of SnO2 on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Surface topography and surface chemical state of thin films were examined by atomic force microscopy and X-ray photoelectron spectroscopy. XRD patterns showed an increase in peak intensities of the rutile crystalline phase by increasing the SnO2 content. The prepared Sn doped TiO2 photo-catalyst films showed optical absorption in the visible light area exhibited excellent photo-catalytic ability for the degradation of methylene blue under visible light irradiation. Best photo-catalytic activity of Sn doped TiO2 thin films was measured in the TiO2–15 mol% SnO2 sample by the Sn4+ dopants presented substitution Ti4+ into the lattice of TiO2 increasing the surface oxygen vacancies and the surface hydroxyl groups.  相似文献   

6.
Rice grain-shaped Nitrogen-doped titanium dioxide (N–TiO2) nano/mesostructures were fabricated through a combination of sol–gel and electrospinning methods. As-spun nanofibers were continuous and upon thermal treatment at 500° C for 1 h in air, the continuous fibers break into rice grain-shaped TiO2 nanostructures of average diameter 50–80 nm. The nanostructures were characterized by spectroscopy, microscopy and powder X-ray diffraction. The rice grains consist of spherical particles of average diameter of ~ 18 nm and with N doping, their average diameters decrease from ~ 18 to ~ 12 nm. The presence of N in the TiO2 lattice was confirmed by X-ray photoelectron spectroscopy (XPS). The band-gap of TiO2 reduced from 3.19 eV to 2.83 eV upon increasing doping level of N from 0% to 5% (w/w), respectively. The N–TiO2 rice grains showed an enhanced UV light-assisted photocatalysis compared to pure TiO2 in the photodegradation of Alizarin Red S dye, an industrially important anthraquinone dye.  相似文献   

7.
Chromium doped titanium dioxide (TiO2) nanocrystal films with various doping concentration have been successfully prepared by a sol–gel dip-coating process. These films have been characterized by XRD, XPS, AFM, and UV–vis absorption spectroscopy. It is found that Cr doping can effectively reduce the transition temperature of anatase to rutile phase as well as the grain size. The absorption edges of TiO2 thin films shift towards longer wavelengths (i.e. red shifted) from 375 nm to about 800 nm with increasing Cr concentration, which greatly enhances TiO2 nano-materials on the absorption of solar spectrum. The appearance of UV–vis absorption features in the visible region can be ascribed to the newly formed energy levels such as Cr 2p level and oxygen vacancy state between the valence and the conduction bands in the TiO2 band structure. The enhancement of the photocatalytic properties is observed for Cr-doped TiO2 thin film.  相似文献   

8.
B. Roy  P.A. Fuierer  S. Aich 《Materials Letters》2011,65(15-16):2473-2475
Dye sensitized solar cells were made on TiO2 scaffold anodes of rutile particles. These TiO2 scaffold anodes were grown from rutile seeds by using a molten salt synthesis technique. Different thickness coatings of mixed amorphous titanium hydroxide and NaCl–KCl eutectic salt mixture on the rutile seeds were heat treated at different temperatures. The rutile whiskers of different aspect ratios were grown depending on the growth temperature. The best photovoltaic performances were obtained for the device made from the scaffold of 20–50 nm diameter and 0.5–1 μm length nanowhiskers obtained at 700 °C for 5 h of treatment.  相似文献   

9.
《Materials Letters》2006,60(13-14):1559-1564
Lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) thin films were grown on Si (100) and Pt(111)/Ti/SiO2/Si(100) substrates by a new reverse dip-coating method of sol–gel process. The method was first proposed and applied to coat films. It has several advantages over the conventional sol–gel coating method, including: no consideration of the mechanical transmission that is difficult to manipulate with costly exact apparatus in classical dip-coating procession, convenient processing control, simplicity, low cost, less pollution, and easy fabrication films on large areas and irregular shaped devices etc. This paper studied the factors including PbO content of precursor, TiO2 and ZrO2 layers, which are related to raw materials of PZT precursor and influence greatly the crystal orientation of the final thin films. We find that the PZT films deposited by precursor with 20% mole excess Pb displayed strong (111) preferred orientation, with 5% mole excess Pb showed a little (100) orientation and pyrochlore phase. The precursor with 10% mole excess Pb was found prompting the PZT films phase transformation with (110) preferred orientation. In addition, the results show that the TiO2 and ZrO2 seeding layers had totally different effects on the preferred orientation of PZT films. The films with TiO2 seeding layer were highly (111) oriented and exhibited better ferroelectric properties (remnant polarization Pr = 14.2 μC cm 2, coercive field Ec = 59.1 Kv cm 1) than those of the films with ZrO2 seeding layer shown (100) orientation (Pr = 7.4 μC cm 2, Ec = 42.9 Kv cm 1).  相似文献   

10.
Nitrogen (n)-doped titanium dioxide (TiO2) was prepared with varying doping extent by a general sol–gel process with a pure TiO2 film as the control sample. The n-doped-2 electrode showed the maximum conversion efficiency with an open-circuit voltage (Voc) of 0.726 V, a photocurrent (Jsc) of 10.52 mA cm?2, a fill factor of 63.6%, and an efficiency of 4.86%, compared to 0.751 V, 7.4 mA cm?2, 67.1%, and 3.73%, respectively, for the undoped (u-doped) TiO2 electrode. The approximate 23% enhancement in the conversion efficiency of the n-doped-2 TiO2 electrode-based dye-sensitized solar cells (DSSCs) was mostly ascribed to the increase of light absorption in the near-vis absorbance and partially to the morphological characteristics of the n-doped TiO2 film. Additionally, the doping type of nitrogen in the TiO2 lattice was closely studied using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The relation between the doping type and the electron behavior in the DSSCs was also examined.  相似文献   

11.
《Materials Research Bulletin》2006,41(9):1596-1603
Anatase TiO2 thin films were successfully prepared on glass slide substrates via a sol–gel method from refluxed sol (RS) containing anatase TiO2 crystals at low temperature of 100 °C. The influences of various refluxing time on crystallinity, morphology and size of the RS sol and dried TiO2 films particles were discussed. These samples were characterized by infrared absorption spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission-scanning electron microscopy (FE-SEM) and UV–vis absorption spectroscopy (UV–vis). The photocatalytic activities of the TiO2 thin films were assessed by the degradation of methyl orange in aqueous solution. The results indicated that titania films thus obtained were transparent and their maximal light transmittance exceeded 80% under visible light region. The TiO2 thin films prepared from RS-6 sol showed the highest photocatalytic activity, when the calcination temperature is higher than 300 °C. The degradation of methyl orange of RS-6 thin films reached 99% after irradiated for 120 min, the results suggested that the TiO2 thin films prepared from RS sol exhibited high photoactivities.  相似文献   

12.
Gallium nitride (GaN) nanoparticles were successfully produced from nano-sized gallium oxide (Ga2O3) particles under a flow of ammonia gas. The gallium oxide nanoparticles were prepared by salt-assisted spray pyrolysis (SASP). Highly crystalline Ga2O3 nanoparticles with an average diameter of approximately 10 nm were obtained at various temperatures when a flux salt (LiCl, 5 mol/l) was added to the precursor solution. The effects of the crystallinity of the Ga2O3 particles and nitridation time on transformation to GaN were characterized using X-ray diffraction and scanning/transmission electron microscopy. Highly crystalline GaN nanoparticles with a mean size of 23.4 nm and a geometric standard deviation of 1.68 nm were obtained when Ga2O3 nanoparticles with relatively low crystallinity were used as the starting material. The resulting GaN nanoparticles showed a photoluminescence peak at 364 nm under UV excitation at 254 nm.  相似文献   

13.
《Materials Research Bulletin》2006,41(7):1378-1384
The exploration of the Li–Ti–Mg–O system, using both sol–gel technique and solid state reaction method, allowed a new phase, Li2MgTiO4, with disordered rock salt structure (a = 4.159 Å) to be synthesized. The latter is shown to be a good type I dielectric material, with a relative constant of 15 at high frequency and low dielectric loss (tanδ < 10−3) over the temperature range −60 to 160 °C. It is also observed that the sintering temperature of this phase is strongly lowered by adopting the sol–gel technique compared to solid state reaction (1150 °C instead of 1300 °C). Finally we show that this phase exhibits cationic conductivity above 400 °C (σ600 °C = 9 × 10−5 S cm−1).  相似文献   

14.
Ti1 ? xVxO2 (x = 0.0–0.10) nanopowders were successfully synthesized by a microwave-assisted sol–gel technique and their crystal structure and electronic structure were investigated. The products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman and UV–Vis spectroscopy. The results revealed that TiO2 powders maintained the anatase phase for calcination temperature below 600 °C, but gradually changed to the rutile phase above 800 °C. The formation of the rutile phase was completed at 1000 °C. For Ti1 ? xVxO2 (x = 0.05) powders, the phase transformation appeared at 600 °C. The absorption edge of Ti1 ? xVxO2 (x > 0) powders broadened to the visible region with increasing V concentration and a strong visible light absorption was obtained with 10% V doping. V doping and subsequent coexistence of both anatase and rutile phases in our Ti1 ? xVxO2 nanoparticles are considered to be responsible for the enhanced absorption of visible light up to 800 nm.  相似文献   

15.
Uniformly distributed nanoparticles of LiCoO2 have been synthesized through the simple sol–gel method in presence of neutral surfactant (Tween-80). The powders were characterized by X-ray diffractometry, transmission electron microscopy and electrochemical method including charge–discharge cycling performance. The powder calcined at a temperature of 900 °C for 5 h shows pure phase layered LiCoO2. The results show that the particle size is reduced in presence of surfactant as compared to normal sol–gel method. Also, the sample prepared in presence of surfactant and calcined at 900 °C for 5 h shows the highest initial discharge capacity (106 mAh g?1) with good cycling stability as compared to the sample prepared without surfactant which shows the specific discharge capacity of 50 mAh g?1.  相似文献   

16.
《Advanced Powder Technology》2014,25(5):1653-1660
Nanosized TiO2 particles have been prepared by top down approach using mechanical milling with high energy planetary ball mill at 250 rpm for different extents of time (5, 10, 20, 30 and 40 h). Electroless (EL) Ni–P–TiO2 nanocomposite coatings were developed using alkaline bath containing milled TiO2 nanoparticles (4 g/l). The results show that, the morphology of TiO2 particles milled for 40 h exhibit irregular shape with a particle diameter in the range of 33–45 nm. Wear studies of the coatings with 30 μm thickness were investigated using 1, 1.5 and 2 N loads with 0.1 and 0.2 m/s rotation speeds. The Ni–P–TiO2 nanocomposite coatings exhibit the enhanced hardness and wear resistance as compared to that of Ni–P alloy coatings. Also the composite after heat treatment at 400 °C for 1 h in argon atmosphere showed improved hardness (1010 VHN) and wear resistance (1.5e-06 mm3/N m).  相似文献   

17.
In this paper twelve TiO2:Fe powders prepared by sol–gel method were analyzed being into consideration the kind of iron compound applied. As a precursor titanium (IV) isopropoxide (TIPO) was used, while as source of iron Fe(NO3)3 or FeCl3 were tested. Fe doped TiO2 was obtained using two methods of synthesis, where different amount of iron was added (1, 5 or 10% w/w). The size of obtained TiO2:Fe particles depends on the iron compound applied and was found in the range 80–300 nm as it was confirmed by SEM technique. TiO2:Fe particles were additionally investigated by dynamic light scattering (DLS) method. Additionally, for the TiO2:Fe particles UV–vis absorption and the zeta potential were analyzed. Selected powders were additionally investigated by magnetic force microscopy (MFM) and X-ray diffraction techniques. Photocatalytic ability of Fe doped TiO2 powders was evaluated by means of cholesteryl hemisuccinate (CHOL) degradation experiment conducted under the 30 min irradiation of simulated solar light.  相似文献   

18.
In this paper, gelcasting and pressureless sintering of YAG gel coated ZrB2–SiC (YZS) composite were conducted. YAG gel coated ZrB2–SiC (YZS) suspension was firstly prepared through sol–gel route. Poly (acrylic acid) was used as dispersant. YZS suspension had the lowest viscosity when using 0.6 wt.% PAA as dispersant. Gelcasting was conducted based on AM–MBAM system. The gelcast YZS sample was then pressureless sintered to about 97% density. During sintering, YAG promoted the densification process from solid state sintering to liquid phase sintering. The average grain sizes of ZrB2 and SiC in the YZS composite were 3.8 and 1.3 μm, respectively. The flexural strength, fracture toughness and microhardness were 375 ± 37 MPa, 4.13 ± 0.45 MPa m1/2 and 14.1 ± 0.5 GPa, respectively.  相似文献   

19.
The InVO4 sol was obtained by a mild hydrothermal treatment at 150 °C for 4 h. InVO4 doped TiO2 sol had been prepared through blending InVO4 sol into TiO2 sol. Novel InVO4-TiO2 thin films on glass slides were synthesized via a sol–gel dipping method from the composite sol. The as-prepared samples were characterized by XRD, FE-SEM and UV–vis absorption spectroscopy. From the visible-light photocatalytic experimental results, it has been demonstrated that the composite film with 3.0 wt.% InVO4 content exhibits the highest visible-light photocatalytic activity. The band gap of the InVO4-TiO2 thin films with 3.0 wt.% InVO4 was estimated to be about 2.32 eV.  相似文献   

20.
Novel biomaterials are of prime importance in tissue engineering. Here, we developed novel nanostructured Al2TiO5–Al2O3–TiO2 composite as a biomaterial for bone repair. Initially, nanocrystalline Al2O3–TiO2 composite powder was synthesized by a sol–gel process. The powder was cold compacted and sintered at 1300–1500 °C to develop nanostructured Al2TiO5–Al2O3–TiO2 composite. Nano features were retained in the sintered structures while the grains showed irregular morphology. The grain-growth and microcracking were prominent at higher sintering temperatures. X-ray diffraction peak intensity of β-Al2TiO5 increased with increasing temperature. β-Al2TiO5 content increased from 91.67% at 1300 °C to 98.83% at 1500 °C, according to Rietveld refinement. The density of β-Al2TiO5 sintered at 1300 °C, 1400 °C and 1500 °C were computed to be 3.668 g cm?3, 3.685 g cm?3 and 3.664 g cm?3, respectively.Nanocrystalline grains enhanced the flexural strength. The highest flexural strength of 43.2 MPa was achieved. Bioactivity and biomechanical properties were assessed in simulated body fluid. Electron microscopy confirmed the formation of apatite crystals on the surface of the nanocomposite. Spectroscopic analysis established the presence of Ca and P ions in the crystals. Results throw light on biocompatibility and bioactivity of β-Al2TiO5 phase, which has not been reported previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号