首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the ITER TBM Program is to provide the first experimental data on the performance of the breeding blankets in the integrated fusion nuclear environment. Such information is essential to design and predict the performance of DEMO and future fusion reactors. It foresees to test six mock-ups of breeding blankets, called Test Blanket Module (TBM), in three dedicated ITER equatorial ports from the beginning of the ITER operation. The TBM and its associated ancillary systems, including cooling system and tritium extraction system, forms the Test Blanket System (TBS) that will be fully integrated in the ITER machine and buildings. This paper describes the main features of the six TBSs that are presently planned for installation and operation in ITER, the main interfaces with other ITER systems and the main aspects of the TBM Program management.  相似文献   

2.
《Fusion Engineering and Design》2014,89(9-10):1969-1974
The test blanket module port plug (TBM PP) consists of a TBM frame and two TBM-sets. However, at any time of the ITER operation, a TBM set can be replaced by a dummy TBM. The frame provides a standardized interface with the vacuum vessel (VV)/port structure and provides thermal isolation from the shield blanket. As one of the plasma-facing components, it shall withstand heat loads while at the same time provide adequate neutron shielding for the VV and magnet coils. The frame design shall provide a stable engineering solution to hold TBM-sets and also provide a mean for rapid remote handling replacement and refurbishment. This paper presents main design features of the conceptual design of TBM PP with two dummy TBMs. Also analysis results are summarized to evaluate shielding, hydraulic, and thermal and structural performances of the TBM PP design.  相似文献   

3.
In the frame of the activities of the EU Breeder Blanket Programme and of the Test Blanket Working Group of ITER, the Helium Cooled Pebble Bed Test Blanket Module (HCPB TBM) is developed in Forschungszentrum Karlsruhe (FZK) to investigate DEMO relevant concepts for blanket modules.The three main functions of a blanket module (removing heat, breeding tritium and shielding sensitive components from radiation) will be tested in ITER using a series of four TBMs, which are irradiated successively during different test campaigns. Each HCPB TBM will be installed, with a vertical orientation, into the vacuum vessel connected to one equatorial port. As the studies performed up to 2006 in FZK concerned a horizontal orientation of the HCPB TBM, a global review of the design is necessary to match with the new ITER specifications.A preliminary version of the new vertical design is proposed extrapolating the neutronic analysis performed for the horizontal HCPB TBM. An overview of the new HCPB TBM vertical designs, as well as the preliminary thermal and fluid dynamic analyses performed for the validation of the design, are presented in this paper. A critical review of the results obtained allows us, in the conclusion, to prepare a plan for the future detailed analyses of the vertical HCPB TBM.  相似文献   

4.
In the framework of the TBM Program, three ITER vacuum vessel equatorial ports (#16, #18 and #02) have been allocated for the testing of up to six mock-ups of six different DEMO tritium breeding blankets. Each one is called a Test Blanket System (TBS). A TBS consists mainly of the Test Blanket Module (TBM), the in-vessel component facing the plasma, and several ancillary systems, in particular the cooling system and the tritium extraction system. Each port accommodates two TBMs and therefore the two TBSs have to share the corresponding port cell. This paper deals with the design integration aspects of the two TBSs in each port cell performed at ITER Organization (IO) with the corresponding definition of interfaces with other ITER systems. The performed activities have raised several issues that are discussed in the paper and for which design solutions are proposed.  相似文献   

5.
Eurofer97 is a Reduced Activation Ferritic-Martensitic (RAFM) steel developed for use as structural material in fusion power reactors blankets and in particular the future DEMOnstration power plant that should follow ITER. In order to evaluate the performances of the different blanket concepts in a fusion-relevant environment, the ITER experimental programme foresees the installation of dedicated Test Blanket Modules (TBMs), representative of the corresponding DEMO blankets, in selected equatorial ports. To be fully relevant, TBMs will have to be designed and fabricated using DEMO relevant technologies and will, in particular, use Eurofer97 as structural material.While the use of ferritic/martensitic steels is not new in the nuclear industry, the fusion environment in ITER poses new challenges for the structural materials. Besides, contrary to DEMO, ITER is characterised by a strongly pulsed mode of operation that could have severe consequences on the lifetime of the components. This paper gives an overview of the issues related to the design of Eurofer97 structures in TBM components, discussing the choice of reference Codes&Standards and the consistency of the design rules with Eurofer97 mechanical properties.  相似文献   

6.
The Indian test blanket module(TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the RD activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices(ITER relevant and DEMO).The Indian Lead–Lithium Cooled Ceramic Breeder(LLCB) blanket concept is one of the Indian DEMO relevant TBM,to be tested in ITER as a part of the TBM program.Helium-Cooled Ceramic Breeder(HCCB) is an alternative blanket concept that consists of lithium titanate(Li_2TiO_3) as ceramic breeder(CB) material in the form of packed pebble beds and beryllium as the neutron multiplier.Specifically,attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions.These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.  相似文献   

7.
《Fusion Engineering and Design》2014,89(7-8):1107-1112
The Indian LLCB TBM, currently under development, will be tested from the first phase of ITER operation (H–H phase) in one-half of the ITER port no-2. The present LLCB TBM design has been optimized based on the neutronic as well as thermal hydraulic analysis results. LLCB TBM R&D activities are primarily focused on (i) development of technologies related to various process systems such as Helium, Pb–Li liquid metal and tritium, (ii) development and qualification of blanket materials viz., structural material (IN-RAFMS), tritium breeding materials (Pb–Li, and Li2TiO3), (iii) development and qualification of fabrication technologies for TBM system. The present status of LLCB TBM design activities as well as the progress made in major R&D areas is presented in this paper.  相似文献   

8.
One of the major ITER goals is test blanket module (TBM) program which is for the demonstration of the breeding capability that would lead to tritium self-sufficiency in a reactor and the extraction of high-grade heat suitable for electricity generation under the ITER fusion environment. While the engineering design of Korean helium cooled solid breeder (HCSB) TBM and its ancillary systems has been performed, a safety assessment on different possible accident scenarios should be carried out for the purpose of licensing. In this paper, accident analyses for several loss of coolant accident (LOCA) cases were performed in order to assess safety aspects of the TBM design using RELAP5/MOD3.2. Since the TBM forms a loop with helium cooling system (HCS) which is one of ancillary systems required for removing heat deposited in the TBM by neutron wall loading and surface heat flux from plasma, it is necessary to model the complete loop for accident analysis. In this study, the helium passage including the TBM and HCS was nodalized for each accident scenario. The TBM and HCS components were modeled as the associated heat structures provided by RELAP5 to include heat transfer across solid boundaries. Based on computational results it was found that current design of the TBM is robust from the safety point of view.  相似文献   

9.
India is developing lead lithium cooled ceramic breeder (LLCB) TBM to be tested in ITER. Liquid lead lithium along with lithium titanate has been adopted as basic material in Indian TBM for neutron multiplication and tritium breeding. RAFMS is used as the structural material and the first wall is cooled by helium. Li-6 enrichment is taken as 60 and 90% in lithium titanate and lead lithium, respectively. The LLCB TBM design is under progress and two design variants are being considered viz. plate design and tube design. In plate design the lead lithium and lithium titanate zones are arranged alternatively and are parallel to the first wall of TBM. In tube design circular tubes of RAFMS are assumed parallel to first wall and lead lithium flows inside the tubes or outside the tubes and lithium titanate is placed accordingly. For the neutronic design of the LLCB TBM, a detailed 3D neutronic model with “look alike” LLCB TBM in equatorial port in ITER has been constructed. A 3D neutron source has been used for the D-T neutrons emitted by plasma. Neutronic study is carried out using Monte Carlo transport code with FENDL-2.1 library with the following objectives: (1) to examine the profiles of heating and tritium production rates in the LLCB TBM, both in the radial and toroidal direction, in order to identify locations where neutronics measurements can be best performed with least perturbation from the surroundings, (2) to provide both local and integrated values for nuclear heating rates required for subsequent thermo-mechanical analysis, and (3) to compare the tritium production capabilities of two variants of the geometries. This paper will present the main findings from this neutronic study.  相似文献   

10.
This paper presents the status of the design and of the development programme of the two test blanket systems (TBSs) based on the blanket concepts supported by the EU, namely the helium cooled lithium lead (HCLL) and helium cooled pebble bed (HCPB) concepts.Both the test blanket modules (TBMs) box design and the associated systems (Helium Cooling Systems, PbLi loop for the HCLL system, helium processing systems for tritium extraction, etc.) have been revised and, where needed, modified according to the assumption that one ITER equatorial port could be available for testing the two European test blanket modules (TBMs).According to EU TBMs programme, two reliable test blanket systems shall be ready for installation on the first day of ITER operation. In order to comply with this ambitious objective, six EURATOM associates who have sustained the TBM program so far have joined themselves in a consortium aiming to ensure an efficient management of the project tasks and exploit specific competences enhancing potential synergies. The consortium objectives and development programme are summarised in the paper.  相似文献   

11.
《Fusion Engineering and Design》2014,89(7-8):1137-1143
Korea plans to test a Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) in ITER. The HCCR TBM adopts a four sub-module concept considering the fabricability and the transfer of irradiated TBM for post irradiation examination. Each sub-module has seven-layer breeding zone, including three neutron multiplier layers packed with beryllium pebbles, three lithium ceramic pebble bed packed tritium breeder layers, and a reflector layer packed with graphite pebbles. Based on this configuration, neutronic and electromagnetic calculations were performed and their results were applied for the conceptual design of HCCR TBM that considers manufacturing feasibility. Also, a design and safety analysis of HCCR Test Blanket System (TBS) was performed using integrated design tools modifying nuclear system codes for helium coolant and tritium behavior evaluation. The Advanced Reduced Activation Alloy (ARAA) is being developed as a structural material. A total of 73 candidate ARAA alloys were designed and their out-of-pile performance was evaluated. The graphite pebbles as the neutron reflector were fabricated by using mechanical machining and grounding method with the surface coated with SiC. The hydrogen permeation characteristics of structural materials were evaluated using the Hydrogen PERmeation (HYPER) facility. The recent design and R&D progress on these areas are addressed in this paper.  相似文献   

12.
《Fusion Engineering and Design》2014,89(9-10):2088-2092
Three ITER equatorial port cells are dedicated to the assessment of six different designs of breeding blankets, known as Test Blanket Modules (TBMs). Several high temperature components and pipework will be present in each TBM port cell and will release a significant quantity of heat that has to be extracted in order to avoid the ambient air and concrete wall temperatures to exceed allowable limits. Moreover, from these components and pipes, a fraction of the contained tritium permeates and/or leaks into the port cell. This paper describes the optimization of the heat extraction management during operation, and the tritium concentration control required for entry into the port cell to proceed with the required maintenance operations after the plasma shutdown.  相似文献   

13.
In India, development of Lead–Lithium Ceramic Breeder (LLCB) blanket is being performed as the primary candidate of Test Blanket Module (TBM) towards DEMO reactor. The LLCB TBM will be tested from the first phase of ITER operation (H-H phase) in one-half of an ITER port no. 2. The Indian TBM R&D program is focused on the development of blanket materials and critical technologies: structural material (IN-RAFMS), breeding materials (Pb–Li, Li2TiO3), development of technologies for Lead–Lithium cooling system (LLCS), helium cooling system (HCS), tritium extraction system (TES) and TBM related fabrication technologies. This paper will provide an overview of LLCB TBM R&D activities under progress in India.  相似文献   

14.
《Fusion Engineering and Design》2014,89(7-8):1119-1125
ITER will be used to test tritium breeding module concepts, which will lead to the design of DEMO fusion reactor demonstrating tritium self-sufficiency and the extraction of high grade heat for electricity production. China plans to test the HCCB TBM modules during different operation phases. Related design and R&D activities for each TBM module with the auxiliary system are introduced.The helium-cooled ceramic breeder (HCCB) test blanket module (TBM) is the primary option of the Chinese TBM program. The preliminary conceptual design of CN HCCB TBM has been completed. A modified design to reduce the RAFM material mass to 1.3 ton has been carried out based on the ITER technical requirement. Basic characteristics and main design parameters of CN HCCB TBM are introduced briefly. The mock-up fabrication and component tests for Chinese test blanket module are being developed. Recent status of the components of CN HCCB TBM and fabrication technology development are also reported. The neutron multiplier Be pebbles, tritium breeder Li4SiO4 pebbles, and structure material CLF-1 of ton-class are being prepared in laboratory scale. The fabrication of pebble bed container and experiment of tritium breeder pebble bed will be started soon. The fabrication technology development is proceeding as the large-scale mock-up fabrication enters into the R&D stage and demonstration tests toward TBM testing on ITER test port are being done as scheduled.  相似文献   

15.
In the framework of research activities on fusion reactors a great effort is dedicated by the scientific community to the development of tritium breeding blankets. One of the main goals is to assess the neutronic behaviour of such devices to analyse their tritium breeding performance and to evaluate the required data for their thermal–mechanic and thermal–hydraulic design. Many papers have been published on this topic considering some stationary condition to calculate such important quantities as heating power, gas production and dpa rates, tritium breeding ratio, etc., but not much attention has been focussed to neutronic transport analyses in transient conditions. The present paper proposes a simple model based on the point kinetics approximation, which has been set up deriving an alternative formulation of the time-dependent neutron transport equation. This approach allows to define some physical characteristics that can be interpreted in a statistical way, making possible to calculate these quantities numerically by the Monte Carlo method. The adoption of the aforementioned numerical method has the great advantage that complex geometries (as the fusion reactor's blankets are) can be analysed with acceptable computational times. Some simple cases have been investigated to implement the theoretical model proposed with MCNP5 code and to show its potentiality. Then, applications to fusion reactor ITER blanket module and to the Helium Cooled Test Blanket Module, to be tested in ITER, have been taken into account in order to assess their neutronic time-dependent behaviour and the results obtained have been critically discussed.  相似文献   

16.
The European test blanket module (EU-TBM), first prototype of the breeding blanket concepts under development for the future DEMO power plant to produce the tritium, will be developed to be tested in three equatorial ports of ITER dedicated to this. The CEA Cadarache under the contract of Association EURATOM/CEA and in close relation with Association EURATOM/HAS works on the integration of the EU-TBM inside ITER tokamak.The installation of the TBM into the vacuum vessel is made with the help of a port plug, constituted with two components: the Shield module and the Port-Plug frame. The Shield module provides the neutron shielding inside the Port-Plug frame, which maintains in cantilever position the TBM and its shield module and closes the vacuum vessel port.This paper will describe the EU-TBM design and integration activities on the cooled shield module and on its interface with the TBM component. A particular attention, in term of thermal and mechanical studies, is dedicated to the design of the shield and test blanket module attachment, and also to the shield design and its internal cooling system.  相似文献   

17.
The lead–lithium ceramic breeder (LLCB) TBM and its auxiliary systems are being developed by India for testing in ITER machine. The LLCB TBM consists of lithium titanate as ceramic breeder (CB) material in the form of packed pebble beds. The FW structural material is ferritic martensitic steel cooled by high-pressure helium gas and lead–lithium eutectic (Pb–Li) flowing separately around the ceramic breeder pebble bed to extract the nuclear heat from the CB zones. Low-pressure helium is purged inside the CB zone for in situ extraction of bred tritium. Currently the LLCB blanket design optimization is under progress. The performance of tritium breeding and high-grade heat extraction is being evaluated by neutronic analysis and thermal–hydraulic calculations for different LLCB cooling configurations and geometrical design variants. The LLCB TBM auxiliary systems such as, helium cooling system (HCS), lead–lithium cooling system (LLCS), tritium extraction system (TES) process design are under progress. Safety analysis of the LLCB test blanket system (TBS) is under progress for the contribution to preliminary safety report of ITER-TBMs. This paper will present the status of the LLCB TBM design, process integration design (PID) of the auxiliary systems and preliminary safety analysis results.  相似文献   

18.
在未来核聚变反应堆中,为补充氚的消耗,需要在核聚变堆的包层中进行氚的在线增殖,以维持核聚变反应的持续进行。为验证这一关键技术,在国际热核聚变实验堆(ITER)上开展了ITER TBM计划(实验包层项目)。作为ITER计划成员方之一,中方以中国氦冷固态增殖剂实验包层模块(HCCB TBM)概念参与ITER TBM计划。HCCB TBM现今进入初步设计阶段,而材料的制备技术和性能数据是支撑其结构设计、安全分析和服役工况评估的基础。本文综述和分析了HCCB TBM结构材料低活化铁素体/马氏体钢(RAFM钢)与功能材料氚增殖剂和中子倍增剂的研究现状,并对这些材料下一步的研究方向进行了展望。  相似文献   

19.
The EU Breeding Blanket Programme aims the testing of two blankets concept in ITER in form of Test Blanket Modules. In the equatorial port #16 the two EU TBMs – a solid and a liquid blanket concept – will be exposed to the plasma and the complex system of their auxiliary systems dedicated to heat and Tritium removal will be integrated in the surrounding ITER buildings. The development of the conceptual design of the EU TBM System is the main objective of the Grant F4E-2008-GRT-09 contract launched by F4E and assigned to a European Consortium. This paper presents an overview of the results after about 20 months of activities: namely, the design of the main sub-systems of the EU TBSs and a concept of integration in ITER.  相似文献   

20.
Korea has developed a Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) testing in ITER, which was considered one of the fusion DEMO-relevant blankets in Korea. The design and performance analysis of the TBM body have been carried out considering the uniqueness of the KO TBM and design requirements by the IO and KO design concept: (1) KO TBM has 4 sub-modules considering a post irradiation test (PIE) and its delivery. (2) A first wall (FW) design was changed into a 15 × 11 rectangular shape and its performance was confirmed by thermal-hydraulic and thermo-mechanical analyses using commercial ANSYS code. The results showed that the revised design model satisfied 1.5Sm and 3Sm of the allowable stress (Sm) in the RCC-MR code at the maximum stress region of the components for mechanical and thermo-mechanical analyses, respectively. (3) Considering the tritium breeding and cooling, a breeding zone (BZ) design was investigated. Three Li and Be layers, and one graphite layer, were proposed by the iteration, and the appropriate temperature distribution was obtained. The design for other components such as a side wall (SW) and back manifold (BM) is on-going considering 9 MPa of channel pressure and its functions of flow distribution as a manifold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号