首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is possible to detect the presence of small field errors in a tokamak with an electron beam. This was demonstrated earlier on T-15 and TEXTOR. This paper discusses the concept, past experience on these tokamaks, calculations for the Korea Superconducting Tokamak Advanced Research (KSTAR) device, an electron beam source, measurement devices for these measurements, and some results. It is shown that small toroidally averaged field errors can be detected by this method. A low voltage electron beam (e-beam) gun and fluorescent screen were mounted in a vertical port and inserted into the vacuum vessel at the end of the KSTAR 2nd campaign plasma experiments. A camera with a narrow field of view was mounted in midplane port in a tube tangent to the field lines at R ∼ 1.3 m and photographed the beam striking the screen. The poloidal field (PF) currents were held constant during the camera exposure period. Many shots with various PF coils energized were made and the deflections of the e-beam were measured. The measurements were made with a camera integration time of 300 ms because of the low light intensity. The results show that there are large field errors that diminish as the PF currents are raised. There appears to be no significant up-down asymmetry for static fields. Measurements with a 7 PF coil scenario with a calculated field null located at e-beam radial position show much larger fields than calculated. KSTAR was constructed with Incoloy 908 conduit using cable-in-conduit conductors (CICC) in 10 of the 14 PF coils and all 16 of the toroidal field (TF) coils. Incoloy 908 has a relative magnetic permeability, μ, of about 10. The field errors appear to be largely due to Incoloy 908.  相似文献   

2.
An external resonant magnetic perturbation (RMP) field, which is an effective method to mitigate or suppress the edge localized mode (ELM), has been planned to be applied on the ELM control issue in ITER. A new set of magnetic perturbation coils, named as high m coils, has been developed for the EAST tokamak. The magnetic perturbation field of the high m coils is localized in the midplane of the low field side, with the spectral characteristic of high m and wide n, where m and n are the poloidal and toroidal mode numbers, respectively. The high m coils generate a strong localized perturbation field. Edge magnetic topology under the application of high m coils should have either a small or no stochastic region. With the combination of the high m coils and the current RMP coils in the EAST, flexible working scenarios of the magnetic perturbation field are available, which is beneficial for ELM control exploration on EAST. Numerical simulations have been carried out to characterize the high m coil system, including the magnetic spectrum and magnetic topology, which shows a great flexibility of magnetic perturbation variation as a tool to investigate the interaction between ELM and external magnetic perturbation.  相似文献   

3.
The present work is devoted to measure the absolute magnetic field produced by different coils in the EGYPTOR tokamak using a calibrated pickup coil. Scaling these measurements in different equations connected with the discharge currents from each supply system are performed. The pickup coil used in the present study is well calibrated with Helmholz coils at the IPP in Prague, Czech Republic. A 0.2% deviation has been found between an evaluation done in the present study and the calibration using Helmholz coils. Experimental measurements of the toroidal magnetic field are in good agreement with calculations to within 2%. Very low values of stray magnetic field components arising from TF and OH coils are recorded which proves that the compensation coils for these components are sufficient.  相似文献   

4.
The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. One of the most important parts of tokamak design is the design of the poloidal field system. This part includes the numbers, individual position, currents and number of coil turns of the magnetic field coils. Circular cross section tokamaks have Vertical Field system but since the elongation and triangularity of plasma cross section shaping are important in improving the plasma performance and stability, the poloidal field coils are designed to have a shaped plasma configuration. In this paper the design of vertical field system and the magnetohydrodynamic equilibrium of axisymmetric plasma, as given by the Grad-Shafranov equation will be discussed. The poloidal field coils system consists of 12 circular coils located symmetrically about the equator plane, six inner PF coils and six outer PF coils. Six outer poloidal field coils (PF) are located outside of the toroidal field coils (TF), and six inner poloidal field coils are wound on the inner legs and are located outside of a vacuum vessel.  相似文献   

5.
The EGYPTOR tokamak is a small device of rectangular cross section 25 × 20 cm. Modification of the original design is done by adding compensation coils connected to the Toroidal field (TF) coils and Ohmic heating (OH) coils. These compensation coils are used to compensate most of the stray magnetic field components that prevent a breakdown discharge. First results of the breakdown discharge are reported. A gated ICCD camera is used to obtain side view images of the visible light emitted from the plasma.  相似文献   

6.
Optimization of the vacuum magnetic field of an ELMO Bumpy Torus (EBT) reactor is investigated. Several methods of improving reactor volume utilization and single particle confinement are analyzed. These include the use of (a) a large number of sectors and/or a large mirror ratio, (b) high field Nb3Sn or Nb3Sn/NbTi hybrid mirror coils, (c) split-wedge mirror coils, (d) axis-encircling aspect ratio enhancement (ARE) coils, and (e) recently developed field symmetrizing (SYM) coils. Of these, particle drift orbit and three-dimensional tensor pressure equilibrium calculations show that the use of SYM coils in conjunction with high field mirror magnets offers the most promise of good plasma performance in reactors that are smaller (by up to 50%) than previous reference designs that did not employ supplementary coils. Aspect ratio enhancement coils also offer an attractive alternative for improved confinement, but they do not have many of the advantages of SYM coils, particularly for reactor applications. Split-wedge mirror coils improve volume utilization and trapped particle confinement, but they do not enhance the confinement of transitional and passing particles. High field magnets improve confinement by permitting a larger mirror ratio and a larger plasma radius by virtue of their smaller cross-sectional area and higher current density. The relative merits of each magnetics configuration are discussed, including the effects on single particle confinement, reactor volume utilization, materials requirements, engineering design considerations, and reactor assembly, maintenance, and accessibility.  相似文献   

7.
Mirnov coils are used to measure fluctuations of the magnetic field which are in particular generated by magnetohydrodynamic (MHD) modes. The underlying plasma currents have a multipolar structure in a poloidal cross-section. Therefore the amplitude of the magnetic fluctuations decays quickly with increasing distance from the plasma edge. It is hence important to place the Mirnov coils as close to the plasma edge as possible where they are exposed to high thermal loads. Two types of Mirnov coils are proposed to be used in Wendelstein 7-X (W7-X). Type 1 (44 Mirnov coils) should be mounted on the plasma side of wall protection panels with a graphite cap to shield them from direct plasma exposure. Type 2 (137 Mirnov coils) will be located behind the tiles of the heat shields. An important issue concerning the design of these Mirnov coils is to verify their suitability for steady state operation from the thermal point of view. Both steady state and transient finite element thermal analyses were performed for the Mirnov coils under different conditions and with different designs. The paper presents detailed thermal analyses of the Mirnov coils.  相似文献   

8.
Surface coils are important devices in the clinical application of nuclear magnetic resonance imaging and spectroscopy (NMRIS) because they have higher signal-to-noise ratios than body or head coils in superficial regions. This paper describes our theoretical and experimental study of the performances of tubular surface coils, aiding the effective application of such coils to NMRIS. We present formulas for the RF magnetic (H1) fields produced by tabular surface coils placed over layered media, and for the self- and loaded-impedances of these coils. The calculated results show the dependence of the coil performances on the coil design parameters and the characteristics of the sample under test. We include the calculated results for the H1 field phase shifts in conductive samples  相似文献   

9.
The magnetic field configurations of poloidal field (PF) and toloidal field (TF) are the base of tokamak plasma operation. They are determined by the parameters such as positions and structures of PF and TF coils. Parameters of TF and PF coils of a new fully superconducting tokamak with non-circular cross-section EAST will change when the coils are cooled down from the ambient temperature to 4 K. Because of the cryogenic and refrigerator system, these parameters cannot be measured directly. Using magnetic probes signals, we measured and reconstructed magnetic field configuration of TF and PF coils. Parameters such as the positions of PF coils, the profile of the toloidal field in radial direction, the ripple and error field of toloidal field are obtained from the measurements.  相似文献   

10.
Radial equilibrium of the KTX plasma column is maintained by the vertical field which is produced by the equilibrium field coils.The equilibrium is also affected by the eddy current,which is generated by the coupling of copper shell,plasma and poloidal field coils.An equivalent circuit model is developed to analyze the dynamic performance of equilibrium field coils,without auxiliary power input to equilibrium field coils and passive conductors.Considering the coupling of poloidal field coils,copper shell and plasma,the evolution of spatial distribution of the eddy current density on the copper shell is estimated by finite element to analyze the effect of shell to balance.The simulation results show that the copper shell and equilibrium field coils can provide enough vertical field to balance 1 MA plasma current in phase 1 of a KTX discharge.Auxiliary power supply on the EQ coils is necessary to control the horizontal displacement of KTX due to the finite resistance effect of the shell.  相似文献   

11.
Shear keys are to be used to support the out-of-plane loading of the toroidal field (TF) coils during a plasma pulse in ITER. At the inner intercoil structures (IIS) a set of poloidal shear keys is used to take the shear load at each connection between adjacent TF coils. Solid circular keys have been selected as reference. At the outer intercoil structures (OIS) adjustable conical shear keys and friction joint based shear panels are used to take the shear load. Low voltage electrical insulation is required at the flanges of the IIS and OIS, plus for all the bolts, poloidal keys and adjustable keys. This electrical insulation has to withstand large compression associated with some shear or slippage. A ceramic coating was selected for this purpose. The main scope of the experimental campaign was the mechanical testing of the shear keys and the electrical insulation in operational conditions relevant to ITER. Both keys were made of Inconel 718, provided with a ceramic alumina coating and inserted into flanges made of cast AISI 316 LN. The adjustable conical shear key was pre-loaded at room temperature and subject to cyclic shear loads of 2.5 MN for a large number of cycles (about 30,000) at cryogenic temperature (77 K). The conical key and the alumina coating remained undamaged after the test. Another test campaign was then performed with higher shear loads (up to 3 MN) to reach a sufficient safety margin even with the friction effect due to the pre-load. A set of 15,000 cycles were completed followed by some cycles at higher loads to reach the ultimate limit, which is the shear load to be experienced by the key in case of a poloidal field (PF) coil short.  相似文献   

12.
The mission of Korea Superconducting Tokamak Advanced Research (KSTAR) project is to develop an advanced steady-state superconducting tokamak for establishing a scientific and technological basis for an attractive fusion reactor. Because one of the KSTAR mission is to achieve a steady-state operation, the use of superconducting coils is an obvious choice for the magnet system. The KSTAR superconducting magnet system consists of 16 Toroidal Field (TF) coils and 14 Poloidal Field (PF) coils. Internally-cooled Cable-In-Conduit Conductors (CICC) are put into use in both the TF and PF coil systems. The TF coil system provides a field of 3.5 T at the plasma center and the PF coil system is able to provide a flux swing of 17 V-sec. The major achievement in KSTAR magnet-system development includes the development of CICC,the development of a full-size TF model coil, the development of a coil system for background magnetic-field generation , the construction of a large-scale superconducting magnet and CICC test facility. TF and PF coils are in the stage of fabrication to pave the way for the scheduled completion of KSTAR by the end of 2006.  相似文献   

13.
International thermonuclear experimental reactor (ITER) edge localized mode (ELM) coils are used to mitigate or suppress ELMs. The location of the coils in the vacuum vessel and behind the blankets exposes them to high radiation levels and high temperatures. The feeders provide the power and cooling water for ELM coils. They are located in the chinmey ports and experience lower radiation and temperature levels. These coils and feeders work in a high magnetic field environment and are subjected to alternating electromagnetic force due to the interaction between high magnetic field and alternating current (AC) current in the coils. They are also subjected to thermal stresses due to thermal expansion. Using the ITER upper ELM coil and feeder as an example, mechanical analyses are performed to verify and optimize the updated design to enhance their structural performance. The results show that the conductor, jacket and bracket can meet the static, fatigue and crack threshold criteria. The optimization indicates that adding chamfers to the bracket can reduce the high stress of the bracket, and removing two rails can reduce the peak reaction force on the two rails arising from thermal expansion.  相似文献   

14.
The ohmic heating system and the poloidal field coils of ASDEX upgrade are supplied by 15 thyristor converter units with an installed apparent power of 600 MVA. To protect the thyristor converters against dc overvoltage arising from abnormal operations and resulting damages caused by the large energy stored in the AUG magnet coils an overvoltage protection system was required. The paper describes the motivation for—and the design and testing of the thyristor crowbar system representing the thyristor converter overvoltage protection system. It will present the layout, analyse the results of measurements obtained during commissioning, compare them to the calculated (design) values and report on the first experience of operation on the AUG coils improving the safety of the equipment.  相似文献   

15.
The JT-60 is planned to be modified to a full-superconducting tokamak referred to as the JT-60 Super Advanced (JT-60SA). The maximum temperature of the magnet during its quench might reach the temperature of higher than several hundreds Kelvin that will damage the superconducting magnet itself. The high precision quench detection system, therefore, is one of the key technologies in the superconducting magnet protection system.The pick-up coil method, which is using voltage taps to detect the normal voltage, is used for the quench detection of the JT-60SA superconducting magnet system. The disk-shaped pick-up coils are inserted in the central solenoid (CS) module to compensate the inductive voltage. In the previous study, the quench detection system requires a large number of pick-up coils. The reliability of quench detection system would be higher by simplifying the detection system such as reducing the number of pick-up coils. Simplifying the quench detection system is also important to reduce the total cost of the protection system. Hence the design method is improved by increasing optimizing parameters. The improved design method can reduce the number of pick-up coils without reducing the sensitivity of detection; consequently the protection system can be designed with higher reliability and lower cost. The applicability of the disk-shaped pick-up coil for quench detection system is evaluated by the two dimensional analysis. In the previous study, however, the analysis model only took into account the CS, EF (equilibrium field) coils and plasma. Therefore, applicability of the disk-shaped pick-up coil for the quench detection system remains open question because the fast plasma events, such as disruption, mini collapse and ELM (edge localized mode), directly influences on the voltage of pick-up coil making the quench signal undetectable. Consequently, a new analysis model proposed in the present paper was designed to avoid this difficulty by introducing the passive coil series such as vacuum vessel and stabilizer. The influence of fast plasma events is absorbed by passive coil series like real system, and the evaluation of applicability can be examined in detail. The analysis results show that the disk-shaped pick-up coil is applicable whenever the standard operation, disruption, mini collapse and ELM.  相似文献   

16.
The HT-7U tokamak is a magnetically-confined full superconducting fusion device, consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF) coils. These coils are wound with cable-in-conductor (CICC) which is based on UNK NbTi wires made in Russian '. A single D-shaped toroidal field magnet coil will be tested for large and expensive magnets systems before assembling them in the toroidal configuration. This paper describes the layout of the instrumentation for a superconducting test facility based on the results of a finite element modeling of the single coil of toroidal magnetic field (TF) coils in HT-7U tokamak device. At the same time, the design of coil support structure in the test facility is particularly discussed in some detail.  相似文献   

17.
The stellarator fusion experiment Wendelstein 7-X (W7-X) is currently under construction at the Max-Planck-Institut für Plasmaphysik in Greifswald, Germany. The main magnetic field will be provided by a superconducting magnet system which generates a fivefold toroidal periodic magnetic field. However, unavoidable tolerances can result in small deviations of the magnetic field which disturb the toroidal periodicity. In order to have a tool to influence these field errors five additional normal conducting trim coils were designed to allow fine tuning of the main magnetic field during plasma operation. In the frame of an international cooperation the trim coils will be contributed by the US partners. Princeton Plasma Physics Laboratory has accomplished several tasks to develop the final design ready for manufacturing e.g. detailed manufacturing design for the winding and for the coil connection area. The design work was accompanied by a detailed analysis of resulting forces and moments to prove the design. The manufacturing of the coils is running at Everson Tesla Inc; the first two coils were received at IPP.  相似文献   

18.
The three-dimensional (3D) magnetic configuration system in the J-TEXT tokamak has featured in many experimental studies. The system mainly consists of three subsystems: the static resonant magnetic perturbation (SRMP) system, the dynamic resonant magnetic perturbation (DRMP) system and the helical coil system. The SRMP coil system consist of two kinds of coils, i.e. three six-loop coils and two five-loop coils. It can suppress tearing modes with a moderate strength, and may also cause mode locking with larger amplitude. The DRMP coil system consists of 12 single-turn saddle coils (DRMP1) and 12 double-turn saddle coils (DRMP2). Its magnetic field can be rotated at a few kHz, leading to either acceleration or deceleration of the tearing mode velocity and the plasma rotation. The helical coil system consists of two closed coils, and is currently under construction to provide external rotational transform in J-TEXT. The 3D magnetic configuration system can suppress tearing modes, preventing and avoiding the occurrence of major disruption.  相似文献   

19.
An overview is presented of an experimental program of magnetic field line mapping on the research-grade Compact Auburn Torsatron (CAT). The vacuum magnetic flux surfaces of the CAT device have been experimentally mapped in a variety of magnetic configurations. The results are compared with an extensive computer model in order to validate the coil design. In initial field mapping experiments, an up-down asymmetry was identified in the vacuum magnetic surfaces, and was corrected with the use of a radial trim field. Magnetic islands are observed and their size has been reduced, also through the use of auxiliary trim coils. The Compact Auburn Torsatron is equipped with two pairs of large Helmholtz coils producing mutually orthogonal magnetic fields in the horizontal plane, and two pairs of helical saddle coils wound directly on the toroidal vacuum vessel. These trim coils are used to control the size and phase of the t=1/2 magnetic island. Through a systematic variation of trim field components, we demonstrate a reduction of the inherent t=1/2 magnetic island size by a factor of three. The technique is applicable to correcting small error fields in larger helical confinement devices. The measurements of island size are compared with measurements of magnetic field line rotation within the island, and are found to be in good agreement with first-order perturbation theory.  相似文献   

20.
A set of 24 saddle loops is used on the Tokamak à Configuration Variable (TCV) to measure the radial magnetic flux at different toroidal and vertical positions. The new system is calibrated together with the standard magnetic diagnostics on TCV. Based on the results of this calibration, the effective current in the poloidal field coils and their position is computed. These corrections are then used to compute the distribution of the error field inside the vacuum vessel for a typical TCV discharge.Since the saddle loops measure the magnetic flux at different toroidal positions, the non-axisymmetric error field is also estimated and correlated to a shift or a tilt of the poloidal field coils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号