首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《国际计算机数学杂志》2012,89(11):2491-2507
In this decade, many new applications in engineering and science are governed by a series of fractional partial differential equations. In this paper, we propose a novel numerical method for a class of time-dependent fractional partial differential equations. The time variable is discretized by using the second order backward differentiation formula scheme, and the quasi-wavelet method is used for spatial discretization. The stability and convergence properties related to the time discretization are discussed and theoretically proven. Numerical examples are obtained to investigate the accuracy and efficiency of the proposed method. The comparisons of the present numerical results with the exact analytical solutions show that the quasi-wavelet method has distinctive local property and can achieve accurate results.  相似文献   

2.
Recently, fractional differential equations have been investigated by employing the famous variational iteration method. However, all the previous works avoid the fractional order term and only handle it as a restricted variation. A fractional variational iteration method was first proposed in [G.C. Wu, E.W.M. Lee, Fractional variational iteration method and its application, Phys. Lett. A 374 (2010) 2506–2509] and gave a generalized Lagrange multiplier. In this paper, two fractional differential equations are approximately solved with the fractional variational iteration method.  相似文献   

3.
In this paper, we introduce a new numerical technique which we call fractional Chebyshev finite difference method. The algorithm is based on a combination of the useful properties of Chebyshev polynomial approximation and finite difference method. We implement this technique to solve numerically the non-linear programming problem which are governed by fractional differential equations (FDEs). The proposed technique is based on using matrix operator expressions which applies to the differential terms. The operational matrix method is derived in our approach in order to approximate the Caputo fractional derivatives. This operational matrix method can be regarded as a non-uniform finite difference scheme. The error bound for the fractional derivatives is introduced. The application of the method to the generated FDEs leads to algebraic systems which can be solved by an appropriate method. Two numerical examples are provided to confirm the accuracy and the effectiveness of the proposed method. A comparison with the fourth-order Runge–Kutta method is given.  相似文献   

4.
This paper presents a numerical solution for solving a nonlinear 2-D optimal control problem (2DOP). The performance index of a nonlinear 2DOP is described with a state and a control function. Furthermore, dynamic constraint of the system is given by a classical diffusion equation. It is preferred to use the Ritz method for finding the numerical solution of the problem. The method is based upon the Legendre polynomial basis. By using this method, the given optimisation nonlinear 2DOP reduces to the problem of solving a system of algebraic equations. The benefit of the method is that it provides greater flexibility in which the given initial and boundary conditions of the problem are imposed. Moreover, compared with the eigenfunction method, the satisfactory results are obtained only in a small number of polynomials order. This numerical approach is applicable and effective for such a kind of nonlinear 2DOP. The convergence of the method is extensively discussed and finally two illustrative examples are included to observe the validity and applicability of the new technique developed in the current work.  相似文献   

5.
An approximation method involving spherical delta functions is presented for the solving of coupled channel differential equations, in particular the Schrödinger equation. A specific example is worked out in detail.  相似文献   

6.
A numerical method is presented for the solution of partial fractional differential equations (FDEs) arising in engineering applications and in general in mathematical physics. The solution procedure applies to both linear and nonlinear problems described by evolution type equations involving fractional time derivatives in bounded domains of arbitrary shape. The method is based on the concept of the analog equation, which in conjunction with the boundary element method (BEM) enables the spatial discretization and converts a partial FDE into a system of coupled ordinary multi-term FDEs. Then this system is solved using the numerical method for the solution of such equations developed recently by Katsikadelis. The method is illustrated by solving second order partial FDEs and its efficiency and accuracy is validated.  相似文献   

7.

A new technique based on beta functions is applied to compute the exact formula for the Riemann–Liouville fractional integral of the fractional-order generalized Chelyshkov wavelets. An approximation method based on the wavelets is proposed to effectively solve nonlinear fractional differential equations. Illustrative examples show that the proposed method gives solutions with less errors in comparison with the previous methods.

  相似文献   

8.
In this paper, we study the numerical method for solving hybrid fuzzy differential using Euler method under generalized Hukuhara differentiability. To this end, we determine the Euler method for both cases of H-differentiability. Also, the convergence of the proposed method is studied and the characteristic theorem is given for both cases. Finally, some numerical examples are given to illustrate the efficiency of the proposed method under generalized Hukuhara differentiability instead of suing Hukuhara differentiability.  相似文献   

9.
10.
Numerical treatment for a fractional differential equation (FDE) is proposed and analysed. The solution of the FDE may be singular near certain domain boundaries, which leads to numerical difficulty. We apply the upwind finite difference method to the FDE. The stability properties and a posteriori error analysis for the discrete scheme are given. Then, a posteriori adapted mesh based on a posteriori error analysis is established by equidistributing arc-length monitor function. Numerical experiments illustrate that the upwind finite difference method on a posteriori adapted mesh is more accurate than the method on uniform mesh.  相似文献   

11.
12.
In this paper, the short memory principle (SMP) is applied for solving the Abel differential equation with fractional order. We evaluate the approximate solution at the end of required interval, and construct a suitable iteration scheme employing this end point as initial value. Numerical experiments show that our iteration method is simple and efficient, and that a proper length of memory could maintain the validity of the short memory principle.  相似文献   

13.
In this paper, an adaptive relaxation method and a discontinuity treatment of edges are proposed to improve the digital image denoising process by using the fourth-order partial differential equation (known as the YK model) first proposed by You and Kaveh. Since the YK model would generate some speckles into the denoised image, a relaxation method is incorporated into the model to reduce the formation of isolated speckles. An additional improvement is employed to handle the discontinuity on the edges of the image. In order to stop the iteration automatically, a control of the iteration is integrated into the denoising process. Numerical results demonstrate that such modifications not only make the denoised image look more natural, but also achieve a higher value of peak signal noise ratio (PSNR).  相似文献   

14.
This paper proposes a symmetry–iteration hybrid algorithm for solving boundary value problems for partial differential equations. First, the multi-parameter symmetry is used to reduce the problem studied to a simpler initial value problem for ordinary differential equations. Then the variational iteration method is employed to obtain its solution. The results reveal that the proposed method is very effective and can be applied for other nonlinear problems.  相似文献   

15.
This paper presents a numerical method for solving a class of fractional optimal control problems (FOCPs). The fractional derivative in these problems is in the Caputo sense. The method is based upon the Legendre orthonormal polynomial basis. The operational matrices of fractional Riemann-Liouville integration and multiplication, along with the Lagrange multiplier method for the constrained extremum are considered. By this method, the given optimization problem reduces to the problem of solving a system of algebraic equations. By solving this system, we achieve the solution of the FOCP. Illustrative examples are included to demonstrate the validity and applicability of the new technique.  相似文献   

16.
In a recent paper (McKee, 1975) the Hopscotch method was applied to solve the fourth-order parabolic (beam) equation. Several computational schemes were discussed which prove to be conditionally stable with the stability range no better than that of the usual explicit scheme.By using two different nets in this paper, the Hopscotch algorithm is applied to the decomposed form of the equation (Richtmyer, 1959) and shown to provide a stable computational scheme.  相似文献   

17.
通过将原方程变换为对流扩散方程,将所得方程的对流项采用四阶组合紧致迎风格式离散,扩散项采用四阶对称紧致格式离散之后,对得到的空间半离散格式采用四阶龙格库塔方法进行时间推进,得到了一种求解非定常对流扩散反应问题的高精度方法,其收敛阶为O(h4+τ4).经数值实验并与文献结果进行对比,表明该格式适用于对流占优问题的数值模拟,验证了格式的良好性能.  相似文献   

18.
In this paper, a new homotopy perturbation method (NHPM) is introduced for obtaining solutions of systems of non-linear partial differential equations. Theoretical considerations are discussed. To illustrate the capability and reliability of the method three examples are provided. Comparison of the results of applying NHPM with those of applying HPM reveal the effectiveness and convenience of the new technique.  相似文献   

19.
《国际计算机数学杂志》2012,89(12):2584-2602
In the present paper we construct the cubic B-spline operational matrix of fractional derivative in the Caputo sense, and use it to solve fractional differential equation. The main characteristic of the approach is that it overcomes the computational difficulty induced by the memory effect. There is no need to save and call all historic information, which can save memory space and reduce computational complexity. Numerical results demonstrate the validity and applicability of the method to solve fractional differential equation. The results from this method are good in terms of accuracy.  相似文献   

20.
Neural Computing and Applications - This paper presents a meshfree collocation method that uses deep learning to determine the basis functions as well as their corresponding weights. This method is...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号