首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The impact of nucleating gas bubbles in the form of a dispersed gas phase on hydrogen isotope permeation at interfaces between liquid metals, like LLE, and structural materials, like stainless steel, has been studied. Liquid metal to structural material interfaces involving surfaces, may lower the nucleation barrier promoting bubble nucleation at active sites. Hence, hydrogen isotope absorption into gas bubbles modelling and control at interfaces may have a capital importance regarding design, operation and safety.He bubbles as a permeation barrier principle is analysed showing a significant impact on hydrogen isotope permeation, which may have a significant effect on liquid metal systems, e.g., tritium extraction systems. Liquid metals like LLE under nuclear irradiation in, e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles.Phenomena modelling is exposed and implemented in openFROM® CFD tool for 0D to 3D simulations. Results for a 1D case show the impact of a He dispersed phase of nano bubbles on hydrogen isotopes permeation at an interface. In addition, a simple permeator simulation, consisting in a straight 3D pipe is exposed showing the effect of a He dispersed gas phase on hydrogen isotope permeation through different stainless steels. Results show the permeation reduction as a function of the interface area covered by He bubbles.Our work highlights the effect of gas bubble nucleation at interfaces and the importance of controlling these phenomena in nuclear technology applications.  相似文献   

2.
Experiments with a sample of a lithium capillary-porous system (CPS) were performed at the reactor IVG-1.M of the Institute of Atomic Energy NNC RK to study the effects of neutron irradiation on the parameters of hydrogen isotope interactions with a lithium CPS. The absorption technique was used during the experiments, and this technique allowed the temperature dependences of the hydrogen isotope interaction rate constants with the lithium CPS to be obtained under various reactor powers. The obtained dependencies were used to determine the main interaction parameters: the activation energies and the pre-exponents of the Arrhenius dependence of the hydrogen interaction rate constants with lithium and the lithium CPS. An increase of the hydrogen isotope interaction rate with the lithium CPS was observed under reactor irradiation.  相似文献   

3.
4.
In order to investigate the synergistic effect of helium and hydrogen on swelling in reduced-activation ferritic/martensitic (RAFM) steel, specimens were separately irradiated by single He+ beam and sequential He+ and H+ beams at different temperatures from 250 to 650 °C. Transmission electron microscope observation showed that implantation of hydrogen into the specimens pre-irradiated by helium can result in obvious enhancement of bubble size and swelling rate which can be regarded as a consequence of hydrogen being trapped by helium bubbles. But when temperature increased, Ostwald ripening mechanism would become dominant, besides, too large a bubble could become mobile and swallow many tiny bubbles on their way moving, reducing bubble number density. And these effects were most remarkable at 450 °C which was the peak bubble swelling temperature for RAMF steel. When temperature was high enough, say above 450, point defects would become mobile and annihilate at dislocations or surface. As a consequence, helium could no longer effectively diffuse and clustering in materials and bubble formation was suppressed. When temperature was above 500, helium bubbles would become unstable and decompose or migrate out of surface. Finally no bubble was observed at 650 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号