首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical alloying is a suitable method for producing copper based composites. Cu–TiO2 composite was fabricated using high energy ball milling and conventional consolidation. Ball milling was performed at different milling durations (0–24 h) to investigate the effects of the milling time on the formation and properties of produced nanostructured Cu–TiO2 composites. The amount of the TiO2 in the final composition of the composite assumed to be 0, 1, 3, 5 and 7 wt%. The milled composite powders were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy to investigate the effects of the milling time on the formation of the composite and its properties. Also hardness, density and electrical conductivity of the sintered specimen were measured. High energy ball milling causes a high density of defects in the powders. Thus the Cu crystallite size decreases, generally to less than 50 nm. The maximum hardness value (105 HV) of the sintered compacts belongs to Cu–5 wt%TiO2 which has been milled for 12 h.  相似文献   

2.
A ductile Cu–Al–Mn–Ti–B shape memory alloy with high fatigue strength has been prepared via mechanical alloying and powder metallurgy. With increasing milling time, the size of the crystallite grains decreases. Cu diffraction pattern appeared only after milling at a speed of 300 rpm for 25 h. The single phase CuAlMnTiB solid solution powder after 35 h milling was hot-pressed and extruded to form the final alloy. The quenched alloy had a single β phase at room temperature and its yield strength, maximum strength and strain were measured to be 390 MPa, 1015 MPa and 14.4%, respectively. The aged alloy showed a martensite structure at room temperature and had a shape memory recovery of 92% after 120 cycles.  相似文献   

3.
Mechanical alloying of Ni–Ge elemental powder blends was carried out in a high-energy SPEX shaker mill to study phase evolution as a function of milling time. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy techniques were employed to characterize the phases present in the milled powders. It was noted that a supersaturated solid solution formed in the early stages of milling containing up to about 12 at.% Ge. On continued milling, the equilibrium NiGe phase started to form at 5 h, and its amount in the powder increased with increasing milling time. On milling for about 60 h, the equilibrium intermetallic NiGe and Ge powder particles reacted to form the metastable NiGe2 phase. Reasons for the formation of this metastable phase at room temperature and at atmospheric pressure, which is normally present at high temperatures and under high pressures, have been discussed.  相似文献   

4.
《Advanced Powder Technology》2014,25(5):1483-1491
Al–Al12(Fe,V)3Si nanocrystalline alloy was fabricated by mechanical alloying (MA) of Al–11.6Fe–1.3V–2.3Si (wt.%) powder mixture followed by a suitable subsequent annealing process. Structural changes of powder particles during the MA were investigated by X-ray diffraction (XRD). Microstructure of powder particles were characterized using scanning electron microscopy (SEM). Differential scanning calorimeter (DSC) was used to study thermal behavior of the as-milled product. A thermodynamic analysis of the process was performed using the extended Miedema model. This analysis showed that in the Al–11.6Fe–1.3V–2.3Si powder mixture, the thermodynamic driving force for solid solution formation is greater than that for amorphous phase formation. XRD results showed that no intermetallic phase is formed by MA alone. Microstructure of the powder after 60 h of MA consisted of a nanostructured Al-based solid solution, with a crystallite size of 19 nm. After annealing of the as-milled powder at 550 °C for 30 min, the Al12(Fe,V)3Si intermetallic phase precipitated in the Al matrix. The final alloy obtained by MA and subsequent annealing had a crystallite size of 49 nm and showed a high microhardness value of 249 HV which is higher than that reported for similar alloy obtained by melt spinning and subsequent milling.  相似文献   

5.
《Advanced Powder Technology》2014,25(6):1793-1799
In the present study, Co-based machining chips (P1) and Co-based atomized alloy (P2) has been processed through planetary ball mill in order to obtain nanostructured materials and also to comprise some their physical and mechanical properties. The processed powders were investigated by X-ray diffraction technique in order to determine several microstructure parameters including phase fractions, the crystallite size and dislocation density. In addition, hardness and morphological changes of the powders were investigated by scanning electron microscopy and microhardness measurements. The results revealed that with increasing milling time, the FCC phase peaks gradually disappeared indicating the FCC to HCP phase transformation. The P1 powder has a lower value of the crystallite size and higher degree of dislocation density and microhardness than that of the P2 powder. The morphological and particle size investigation showed the role of initial HCP phase and chemical composition on the final processed powders. In addition results showed that in the first step of milling the crystallite size for two powders reach to a nanometer size and after 12 h of milling the crystallite size decreases to approximately 27 and 33 nm for P1 and P2 powders, respectively.  相似文献   

6.
NiFe-CNT and Ni3Fe-CNT nanocomposites were fabricated by high energy mechanical alloying method. X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and optical microscopy were employed for evolution of phase composition, morphology and microstructure of the powder particles. Ball milled powders were heat treated at 500 °C for 1 h to release the milling induced stresses. Bulk samples were prepared by sintering of cold pressed (300 MPa) samples at 1040 °C for 1 h. XRD patterns of powders, as-milled and after annealing at 500 °C did not show any peak related to CNTs or excess phases due to the interaction between CNTs and matrix. SEM micrographs showed that the addition of CNTs caused a reduction of powder particles size. The hardness value of as-milled NiFe and Ni3Fe powders reach to 660 and 720 HV, respectively. According to optical microscopy evaluations, the amount and size of the porosities of the composites bulk samples decreased in comparison with matrix ones.  相似文献   

7.
In this paper, the possibility of mechano-chemical synthesis, as a single step process for preparation of nanostructured nickel aluminate spinel powder from NiO/Al2O3 spent catalyst was investigated. Powder samples were characterized in terms of composition, morphology, structure, particle size and surface area using complementary techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal analysis (DTA) and volumetric adsorption of nitrogen. It was found that formation of spinel was possible after 60 h of milling with no heat treatment. Additionally, influence of mechanical activation on the heat treatment temperature was discussed. It was observed that heat treatment of 15 h milled sample at 1100 °C is enough to produce nickel aluminate spinel. A product of direct mechanical milling showed higher value of surface area (42.3 m2/g) and smaller crystallite size (12 nm) as compared to the heat treated product.  相似文献   

8.
In this paper, molybdenum disilicide <alpha>- and <beta>-phases can be successfully synthesized during mechanical alloying (MA). Also, this method promote a self-propagating reaction (MSR) at balls to powder ratio (BPR) 10:1, shorter milling time with speed (400 rpm) without subsequent heat treatment that was considerably lower energy than that used in conventional methods. Two different molar ratios of Mo:3Si and Mo:4Si were prepared in addition to the stoichiometric powder mixture Mo:2Si intermittent sampling was done from 4 h to 20 h. Increasing Si content clearly delayed the MSR and the reactants were gradually converted to both <alpha>- and <beta>-MoSi2 phases over a relatively long time. Samples were characterized by using X-ray diffraction (XRD)/scanning electron microscopy (SEM) analyses and grain size calculated based on the conventional Scherrer method. XRD patterns of stoichiometric powder samples milled with BPR 10:1 indicated the rapid formation of <alpha>- and <beta>-MoSi2 even after 4 h milling. Samples milled with higher BPR lost their crystallinity after milling for 16 h. SEM images in general showed considerable lowering in average particle size with milled samples. Crystallite size was found to decrease with milling time and with increasing BPR.  相似文献   

9.
The Cu-Fe and Cu-Fe-SiC nanocomposite powders were synthesized by a two step mechanical alloying process. A supersaturated solid-solution of Cu-20 wt% Fe was prepared by ball milling of elemental powders up to 5 and 20 h and subsequently the SiC powder was added during additional 5 h milling. The dissolution of Fe into Cu matrix and the morphology of powder particles were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. It was found that the iron peaks in the XRD patterns vanish at the early stages of mechanical alloying process but the dissolution of Fe needs more milling time. Moreover, the crystallite size of the matrix decreases with increasing milling time and the crystallite size reaches a plateau with continued milling. In this regard, the addition of SiC was found to be beneficial in postponing the saturation in crystallite size refinement. Moreover, the effect of SiC on the particle size was found to be significant only if it is added at the right time. It was also found that the silicon carbide and iron particles are present after consolidation and are on the order of nanometer sizes.  相似文献   

10.
In the present paper, the effect of milling process on the chemical composition, structure, microhardness, and thermal behavior of Ti–41Ni–9Cu compounds developed by mechanical alloying was evaluated. The structural characteristic of the alloyed powders was evaluated by X-ray diffraction (XRD). The chemical composition homogeneity and the powder morphology and size were studied by scanning electron microscopy coupled with electron dispersive X-ray spectroscopy. Moreover, the Vickers micro-indentation hardness of the powders milled for different milling times was determined. Finally, the thermal behavior of the as-milled powders was studied by differential scanning calorimetery. According to the results, at the initial stages of milling (typically 0–12 h), the structure consisted of a Ni solid solution and amorphous phase, and by the milling evolution, nanocrystalline martensite (B19′) and austenite (B2) phases were initially formed from the initial materials and then from the amorphous phase. It was found that by the milling development, the composition uniformity is increased, the inter-layer thickness is reduced, and the powders microhardness is initially increased, then reduced, and afterward re-increased. It was also realized that the thermal behavior of the alloyed powders and the structure of heat treated samples is considerably affected by the milling time.  相似文献   

11.
《Composites Science and Technology》2007,67(11-12):2292-2296
The goal of this work was to study the development of microstructure of the coatings cold sprayed from nanocomposite powders TiB2–43 vol.%-Cu containing titanium diboride particles 50–100 nm in size. Titanium diboride phase was in situ produced in a copper matrix using high-energy mechanical milling of Ti, B and Cu powders and self-propagating high-temperature synthesis. The coatings were fabricated on a copper substrate. The microstructure of the coatings was studied by scanning electron microscopy and energy dispersive spectroscopy. Due to low-temperature conditions of spraying, nanostructured coatings were produced retaining the microstructure of the nanocomposite powder being sprayed. Despite the high content of titanium diboride and the difference in plasticity of the phases, the coatings were fully dense and composed of closely packed powder particles. Considering the results of this study, cold spraying of nanocomposite mechanically milled powders can be recommended as a promising way for fabrication of nanostructured coatings.  相似文献   

12.
The present work reports on the preparation of boron carbide nanoparticles by the reduction of boron oxide with magnesium in the presence of carbon using the mechanochemical processing. The phase transformation and microstructure of powders during ball milling were investigated by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results showed that during ball milling the B2O3–Mg–C reacted with a self-propagating combustion mode producing MgO and B4C compounds. To separate B4C from the milled powder mixture, an appropriate leaching process was used. After leaching, the purified powder mixture was characterized using XRD and transmission electron microscope (TEM). XRD studies indicated that the prepared particles were single phase crystalline B4C. Moreover, TEM studies showed the size of B4C particles were ranging from 10 to 80 nm.  相似文献   

13.
F. Tavangarian  R. Emadi 《Materials Letters》2011,65(15-16):2354-2356
This paper reports the successful synthesis of nanostructure bredigite powder by mechanical activation with subsequent annealing. Talc, calcium carbonate, and amorphous silica were used as initial reactants. The initial materials were milled for various times and then annealed in order to obtain single-phase nanostructure bredigite powder. The results showed that during the formation of bredigite powder some intermediate compounds such as wollastonite and larnite were formed. Single-phase nanostructure bredigite powder was synthesized by 10–60 h of mechanical activation with subsequent annealing at 1200 °C for 1 h. The bredigite powder obtained after 60 h milling and subsequent annealing at 1200 °C for 1 h had a mean crystallite size of about 50 nm and mean particle size of about 779 nm.  相似文献   

14.
In this paper, tribological behavior and mechanical properties of nanostructured Al2024 alloy produced by mechanical milling and hot extrusion were investigated before and after adding B4C particles. Mechanical milling was used to synthesize the nanostructured Al2024 in attrition mill under argon atmosphere up to 50 h. A similar process was used to produce Al2024–5 wt.%B4C composite powder. The milled powders were formed by hot pressing and then were exposed to hot extrusion in 750 °C with extrusion ratio of 10:1. To study the microstructure of milled powders and hot extruded samples, optical microscopy, transmission electron microscopy and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS) were used. The mechanical properties of samples were also compared together using tension, compression and hardness tests. The wear properties of samples were studied using pin-on-disk apparatus under a 20 N load. The results show that mechanical milling decreases the size of aluminum matrix grains to less than 100 nm. The results of mechanical and wear tests also indicate that mechanical milling and adding B4C particles increase strength, hardness and wear resistance of Al2024 and decrease its ductility remarkably.  相似文献   

15.
In recent years researches on properties of nanocrystalline materials in comparison with coarse-grained materials has attracted a great deal of attention. The present investigation has been based on production of nanocrystalline Ti6Al4V powder by means of high energy mechanical milling. In this regard, Ti6Al4V powder was produced by ball milling of machining scraps of Ti6Al4V. The structural and morphological changes of powders were investigated by X-ray diffraction, scanning electron microscopy, and microhardness measurements. The results revealed that ball milling process reduced the size of the coherent-scattering region of Ti6Al4V to approximately 20 nm. Also a remarkable change in morphology and particle size was occurred during ball milling. Moreover, phase evolution during milling was taken into consideration. The as-milled Ti6Al4V powder exhibited higher microhardness comparing to the original samples.  相似文献   

16.
Synthesis of high surface area ZnO powder was achieved by continuous precipitation using zinc ions and urea at low temperature of 90 °C. The powder precipitated resulted in high-purity single-phase ZnO powder when calcined at 280 °C for 3 h in air. The solution pH and the precipitation duration strongly affected the surface area of the calcined ZnO powder. Detailed structural characterizations demonstrated that the synthesized ZnO powder were single crystalline with wurtzite hexagonal phase. The powdered samples precipitated by homogeneous precipitation crystallized directly to hydrozincite without any intermediate phase formation.The phase structures, morphologies and properties of the final ZnO powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering particle size analysis (DLS), and nitrogen physisorption in order to determine the specific surface area (BET) and the pore size distribution (BJH).  相似文献   

17.
We employed a high-energy ball mill for the synthesis of nanograined Ti55C45 powders starting from elemental Ti and C powders. The mechanically induced self-propagating reaction that occurred between the reactant materials was monitored via a gas atmosphere gas-temperature-monitoring system. A single phase of NaCl-type TiC was obtained after 5 h of ball milling. To decrease the powder and grain sizes, the material was subjected to further ball milling time. The powders obtained after 200 h of milling possessed spherical-like morphology with average particle and grain sizes of 45 μm and 4.2 nm, respectively. The end-products obtained after 200 h of ball milling time, were then consolidated into full dense compacts, using hot pressing and spark plasma sintering at 1500 and 34.5 MPa, with heating rates of 20 °C/min and 500 °C/min, respectively. Whereas hot pressing of the powders led to severe grain growth (~ 436 nm in diameter), the as-spark plasma sintered powders maintained their nanograined characteristics (~ 28 nm in diameter). The as-synthesized and as-consolidated powders were characterized, using X-ray diffraction, high-resolution electron microscopy, and scanning electron microscopy. The mechanical properties of the consolidated samples obtained via the hot pressing and spark plasma sintering techniques were characterized, using Vickers microhardness and non-destructive testing techniques. The Vickers hardness, Young's modulus, shear modulus and fracture toughness of as-spark plasma sintered samples were 32 GPa, 358 GPa, 151 GPa and 6.4 MPa·m1/2, respectively. The effects of the consolidation approach on the grain size and mechanical properties were investigated and are discussed.  相似文献   

18.
Cerium-doped yttrium aluminum garnet (YAG:Ce) powder was synthesized by the Pechini method with aluminum nitride, yttrium nitride, citric acid and ethylene glycol as the starting materials. Structure, morphology and luminescence spectra were investigated by using X-ray diffraction, thermogravimetric and differential thermal analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and photoluminescence spectroscopy measurements. The pure YAG phase was formed after heat treatment at 800 °C for 3 h and no intermediate phase was observed. The average size of the particles was about 70 nm. The photoluminescence spectrum of the crystalline YAG:Ce phosphors showed the green-yellow emission with 5d  4f transition as the most prominent group.The increase of the ethylene glycol:citric acid molar ratio, resulted in a powder with smaller particle size and better luminescence properties.  相似文献   

19.
In this research, in situ fabrication of Al3V based nanocomposite and its formation mechanism have been investigated. In order to synthesize Al3V/Al2O3 nanocomposite, a mixture of Al and V2O5 powders was subjected to high-energy ball milling and the nanocomposite was produced through a mechanochemical reaction. The produced structure was isothermally heat-treated at 500–600 °C for 0.5–2 h under argon atmosphere. In order to evaluate the structural changes during milling and annealing, the synthesized powders were characterized by X-ray diffraction (XRD). Moreover, the powder morphological changes were studied by scanning electron microscopy (SEM). It was observed that the reaction between Al and V2O5 occurred after about 30 min and, the Al3V and Al2O3 were formed in nanocrystalline structure with the continuing mechanical milling. Calculation of adiabatic temperature confirmed that reaction took place in combustion mode. In final stage of milling up to 40 h; it was observed that the Al3V decomposed to Al and V so that the optimum time of milling to achieve fabrication of nanocomposite was determined to be about 20 h. Calculations based on Miedema’s model verified partial disordering of Al3V during further milling and annealing of as-milled powder at 600 °C led to the ordering of Al3V. The crystallite size of Al3V and Al2O3 after annealing at 600 °C for 2 h remained in nanometer scale. So the final product appeared to be stable even after annealing.  相似文献   

20.
The effect of Cu–Mg cluster size and number density on the fatigue fracture behavior of Al–Cu–Mg alloy with various aging conditions was investigated by means of transmission electron microscopy (TEM), atom probe tomography (APT), scanning electron microscopy (SEM) and fatigue testing. Results showed that the fatigue crack propagation (FCP) resistances of 170 °C/1 h and 170 °C/8 h samples were higher than that of 170 °C/0.5 h sample due to increased number density of great size Cu–Mg co-clusters (>50 atoms). These large clusters were harder to dissolve during cycle deformation, thus reduced the cyclic softening effect and enhanced the FCP resistance. Moreover, as aging prolonged, the critical shear stress (τm) of co-clusters by modulus hardening increased from 10.2 (MPa) in 170 °C/0.5 h sample to 12.4 in 170 °C/1 h sample and 12.1 in 170 °C/8 h sample. Thus the force required for the movement of dislocations impeded by co-clusters, as well as the resistance of FCP caused by co-clusters, in 170 °C/1 h and 170 °C/8 h sample was higher than that in 170 °C/0.5 h sample. The 170 °C/8 h sample possessed the lower FCP resistance than 170 °C/1 h sample because of the existence of S′ phase. S′ phase was a kind of semi-coherent unshearable precipitate and hence reduced the planar-reversible slip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号