共查询到20条相似文献,搜索用时 62 毫秒
1.
深度学习作为图像识别领域重要的技术手段,有着广阔的应用前景,开展图像识别技术研究对推动计算机视觉及人工智能的发展具有重要的理论价值和现实意义,文中对深度学习在图像识别中的应用给予综述。介绍了深度学习的由来,具体分析了深度信念网络、卷积神经网络、循环神经网络、生成式对抗网络以及胶囊网络等深度学习模型,对各个深度学习模型的改进型模型逐一对比分析。总结近年来深度学习在人脸识别、医学图像识别、遥感图像分类等图像识别应用领域取得的研究成果并探讨了已有研究值得商榷之处,对深度学习在图像识别领域中的发展趋势进行探讨,指出有效使用迁移学习技术识别小样本数据,使用非监督与半监督学习对图像进行识别,如何对视频图像进行有效识别以及强化模型的理论性等是该领域研究的进一步方向。 相似文献
2.
3.
4.
基于深度学习的人体行为识别算法综述 总被引:10,自引:0,他引:10
人体行为识别和深度学习理论是智能视频分析领域的研究热点, 近年来得到了学术界及工程界的广泛重视, 是智能视频分析与理解、视频监控、人机交互等诸多领域的理论基础. 近年来, 被广泛关注的深度学习算法已经被成功运用于语音识别、图形识别等各个领域.深度学习理论在静态图像特征提取上取得了卓著成就, 并逐步推广至具有时间序列的视频行为识别研究中. 本文在回顾了基于时空兴趣点等传统行为识别方法的基础上, 对近年来提出的基于不同深度学习框架的人体行为识别新进展进行了逐一介绍和总结分析; 包括卷积神经网络(Convolution neural network, CNN)、独立子空间分析(Independent subspace analysis, ISA)、限制玻尔兹曼机(Restricted Boltzmann machine, RBM)以及递归神经网络(Recurrent neural network, RNN)及其在行为识别中的模型建立, 对模型性能、成果进展及各类方法的优缺点进行了分析和总结. 相似文献
5.
紧凑型深度卷积神经网络在图像识别中的应用 总被引:1,自引:0,他引:1
针对深度卷积神经网络的结构越来越复杂,参数规模过于庞大的问题,设计出一种新的紧凑型卷积神经网络结构Width-MixedNet和其多分支的基本模块Conv-mixed,该架构扩展了卷积神经网络的宽度。Convmixed利用分支结构使多个不同的卷积层处理同一个特征图,提取不同的特征。在深度卷积神经网络的识别任务中,使用多个小型卷积层叠加,逐层缩小特征图的方法代替全连接层进行最后的特征提取。整个Width-MixedNet架构的参数数量只有3.4×10~5,仅有传统深度卷积神经网络的1/30。分别在CIFAR-10、CIFAR-100和MNIST数据集上进行实验,准确率分别达到了93.02%、66.19%和99.59%。实验表明,Width-MixedNet有更强的学习能力和表现能力,在提高识别精度的同时,大大降低了网络的参数规模。 相似文献
6.
李婷 《网络安全技术与应用》2020,(1):34-35
网络安全是影响其普及使用的一个重要因素,经过多年的研究和实践,许多学者和网络安全公司致力于防御研究,取得了一定的成就.但是,防火墙、杀毒软件等均具有一定的被动型,没有采集实时的、主动的防御模式.本文为了改进防御系统性能,引入了深度学习技术.深度学习是一种多层次的卷积神经网络,其可以从海量数据中发现潜在的、有价值的数据,将其应用于网络安全防御中,可以及时地发现网络中的病毒或木马数据,从而提高网络安全防御的主动性. 相似文献
7.
点云数据被广泛用于多种三维场景,深度学习凭借提取特征自动化、泛化能力强等优势在三维点云的应用领域快速发展,逐渐成为点云分类的主流研究方法。根据提取方式的不同,将现有算法归纳为传统方法以及深度学习算法。着重介绍基于深度学习的代表性方法和最新研究,总结其基本思想以及优缺点,对比分析主要方法的实验结果;展望深度学习在点云分类领域的未来工作以及研究发展方向。 相似文献
8.
9.
10.
肠道肿瘤诊断目前主要依靠医务人员对于医学图像的经验判断,随着患者不断增加,对于医院和医生的诊断压力也逐渐加大.采用一种自动判断肠道肿瘤的方式对于解决目前肠道肿瘤诊断困难非常必要.文章研究利用深度学习方法针对肠道肿瘤图像进行特征提取和识别,实验采集了1600个医学图像数据,按照7:3比例分配训练集和测试集,采用ResNet50模型,经过训练的网络准确率达到97.95%,在一定程度上为肠癌的诊断提供了辅助诊断信息,具有一定的实用价值. 相似文献
11.
随着生活水平的逐日提高,人们对图片的视觉需求不再仅仅局限于图片的原始风格,由此诞生了各式各样的滤镜,它们让图片更具有观赏性.而基于机器深度学习的图像风格化应用,可以在此方向更进一步,利用训练好的卷积神经网络模型进行图像特征提取,使图片呈现出不同的艺术风格. 相似文献
12.
现有的草图识别框架利用整幅图像作为网络输入,草图识别过程可解释性较差.文中融合深度学习和语义树,提出草图语义网(Sketch-Semantic Net).首先对草图进行部件分割,将单幅完整的草图分割为多个具有语义概念的部件图.然后利用深度迁移学习识别草图部件.最后通过语义树的语义概念关联部件同部件所属草图对象类别,较好地弥补sketch图像从底层语义到高层语义之间的语义鸿沟.在广泛应用的草图分割数据集上的实验验证文中方法的有效性. 相似文献
13.
火灾事故频发严重威胁着社会公共安全和人们的生命财产安全。火灾发生的不可预见性增加了火灾防控的难度。传统温感、烟感火灾探测设备对室内空间火灾探测效率较高;以人工选择特征为依据的火灾图像识别技术受限于实际火灾场景特征复杂多变,存在误报情况;深度学习技术通过海量火灾场景图片训练和网络参数优化,自动提取火灾图像深度抽象特征,以达到对火灾的精准识别和预警判断。本文就火灾图像识别及深度学习技术在该领域中的应用进行分析,对影响深度学习技术在火灾图像识别应用中的瓶颈问题进行探讨,并展望了该技术的未来发展。 相似文献
14.
针对深度增量学习可能产生灾难性遗忘的问题,提出双分支迭代的深度增量图像分类方法,使用主网络存储旧类知识,分支网络学习增量数据中的新类知识,并在增量过程中使用主网络的权重优化分支网络的参数.使用基于密度峰值聚类的方法从迭代数据集中筛选典型样本并构建保留集,并加入增量迭代训练中,减轻灾难性遗忘.实验表明,文中方法的性能较优. 相似文献
15.
文字识别是一种通用的图像理解技术,对信息检索、车牌识别和自动驾驶等应用的研究有着重要意义。随着神经网络的伟大复兴,场景文字识别任务得到了很大推动,近年来涌现了许多基于深度学习的文字识别算法。本文提出了一种基于特征融合的CRNN改进算法,使用三个通用的文字识别数据集从识别准确率、运行效率和模型大小三个方面进行分析。实验结果表明该算法在提高准确率的同时,运行效率也有所提高。 相似文献
16.
受人脑视觉感知机制启发,在深度学习框架下提出基于注意力机制的时间分组深度网络行为识别算法.针对局部时序信息在描述持续时间较长的复杂动作上的不足,使用视频分组稀疏抽样策略,以更低的成本进行视频级时间建模.在识别阶段引入通道注意力映射,进一步利用全局特征信息和捕捉分类兴趣点,执行通道特征重新校准,提高网络的表达能力.实验表明,文中算法在UCF101、HMDB51数据集上的识别准确率较高. 相似文献
17.
18.
随着深度学习的发展,图像风格转换任务开始使用卷积神经网络实现。针对传统图像转换网络在转换后,保留纹理细节的能力不足的问题,本文基于Justin等人的风格转换模型,优化了转换网络中的残差结构,并结合生成对抗的思想,改进了风格转换模型,使模型能提取图像中更抽象的特征,并对损失函数进行调整,进一步提升生成图像的质量。实验表明,本文方法在进行图像风格转换时,有效提升了风格化效果并且通过比较在多种评价指标下得到的结果,可知图像质量得到提升。 相似文献
19.
传统图像标注方法中人工选取特征费时费力,传统标签传播算法忽视语义近邻,导致视觉相似而语义不相似,影响标注效果.针对上述问题,文中提出融合深度特征和语义邻域的自动图像标注方法.首先构建基于深度卷积神经网络的统一、自适应深度特征提取框架,然后对训练集划分语义组并建立待标注图像的邻域图像集,最后根据视觉距离计算邻域图像各标签的贡献值并排序得到标注关键词.在基准数据集上实验表明,相比传统人工综合特征,文中提出的深度特征维数更低,效果更好.文中方法改善传统视觉近邻标注方法中的视觉相似而语义不相似的问题,有效提升准确率和准确预测的标签总数. 相似文献
20.
针对深度学习单一模型不能有效处理不确定性预测结果的问题,文中从三支决策出发,将阴影集理论引入图像分类中,构建两阶段图像分类方法.首先,使用卷积神经网络分类样本,获得隶属度矩阵.然后,使用基于阴影集的样本划分算法处理隶属度矩阵,获得分类结果中存在不确定性的部分,即不确定域,进行延迟决策.最后,使用特征融合技术,将SVM作为分类器进行二次分类,降低分类结果的不确定性,提高分类准确率.在CIFAR-10、Caltech 101数据集上的实验验证文中方法的有效性. 相似文献