首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermoelectric properties of Re6GaxSeyTe15?y (0  x  2; 0  y  7.5) were studied in the temperature range 90–320 K. The measurements revealed p-type semi-conductivity in all samples. Relatively high values of the Seebeck coefficients, α, were obtained in all samples. The electrical resistivities and room temperature Seebeck coefficients increased as selenium concentrations increased, for each value of x. The room temperature Seebeck coefficients and resistivities decreased as gallium content increased, for each value of y. Low carrier concentrations were found at room temperatures, in agreement with large Seebeck coefficient values. Measurements suggested hopping conduction between 150 K and 280 K for all samples. Temperature dependences of the Seebeck coefficient below 150 K were accounted for by phonon drag effect. The power factors for the samples were calculated. Theoretical discussions of dependences of the measured quantities on temperature and composition are given. Usefulness of these materials as thermoelectrics is also discussed.  相似文献   

2.
Solid solution LaCr1?xMgxO3, 0 < х  0.25 was prepared by heating stoichiometric amounts of appropriate oxides in air at 1400 °C, 48 h. At room temperature it crystallizes in orthorhombically distorted GdFeO3-type structure (a  √2 × aper; b  √2 × ape; c  2 × aper, where aper – perovskite subcell parameter). High-temperature X-ray powder diffraction (HT XRPD) and dilatometry revealed first order phase transition to rhombohedral perovskite phase (R-3c, a  √2 × aper, c  2√3 × aper) at 260–311 °C (OR phase transition). Crystal structures of room-temperature orthorhombic and high-temperature rhombohedral phases for LaCr0.75Mg0.25O3 were refined using HT XRPD data. Temperature of OR phase transition increases gradually with increasing of magnesium content. Low-temperature orthorhombic phase exhibits TEC lower in comparison with high-temperature rhombohedral one (e.g. for LaCr0.85Mg0.15O3 TEC(O) = 8.8 ppm K?1; TEC(R) = 11.6 ppm K?1). TEC for rhombohedral phase increases with increasing magnesium content from 10.4 ppm K?1 for LaCr0.95Mg0.05O3 to 12.1 ppm K?1 for LaCr0.75Mg0.25O3.  相似文献   

3.
《Vacuum》2012,86(4):351-355
Different compositions of Bi5GexSe95−x (x = 30, 35, 40 and 45 at %) thin films were deposited onto cleaned glass substrates by thermal evaporation method. The structural characterization revealed that, the as-prepared films of x = 30, 35 and 40 at. % are in amorphous state but there are few tiny crystalline peaks of relatively low intensity for the film with x = 45 at. %. The chemical composition of the as-prepared Bi5GexSe65−x films has been checked using energy dispersive X-ray spectroscopy (EDX). The optical properties for the as-deposited Bi5GexSe65−x thin films have been studied. The additions of Ge content were found to affect the optical constants (refractive index, n and the extinction coefficient, k). Tauc’s relation for the allowed indirect transition is successfully describing the mechanism of the optical absorption. It was found that, the optical energy gap (Eg) decreases with the increase in Ge content. These obtained results were discussed in terms of the chemical bond approach proposed by Bicermo and Ovshinsky. The composition dependence of the refractive index was discussed in terms of the single oscillator model.  相似文献   

4.
Highly crystalline stoichiometric Co1?xZnxFe2O4 (0  x  1) nanoparticles were successfully synthesized by the polyol process. X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), transmission electron microscopy (TEM), infrared spectroscopy (IR), zero-field 57Fe Mössbauer spectrometry and magnetic measurements using a SQUID magnetometer were employed to investigate the effect of the substitution of Zn2+ ions for Co2+ ones on the structure, and the magnetic properties of the cobalt ferrite, CoFe2O4. The unit cell parameter almost increases linearly with increasing Zn concentration, x, following Vegard's law. The red and blue shifts observed for the metal-oxygen ν1 and ν2 IR vibration bands, respectively, were consistent with the preferential entrance of Zn2+ ions in tetrahedral sites. Besides, detailed magnetic investigation in correlation with the cation distribution has been reported. All the particles exhibit superparamagnetic behaviour at room temperature. In addition, the magnetic characteristics (blocking temperature, saturation magnetization, coercivity, Curie temperature) clearly depend on the chemical composition and cation distribution. Both the blocking temperature and Curie temperature decrease drastically with Zn composition, x, increase. Further, the saturation magnetization follows an almost bulk-like behaviour with values notably larger than that of the bulk, mainly attributed to cation distribution deviation.  相似文献   

5.
A few compositions of perovskite oxide BaSn1?xNbxO3 (with x  0.10) system, prepared by solid state ceramic method, have been studied employing XPS and Mössbauer spectroscopy techniques. Mössbauer spectra of these compositions in the temperature range of 78–300 K reveal that the oxidation state of Sn is +4. In XPS measurements, compositions with x  0.010 show no evidence of Nb5+ signal whereas the compositions with x  0.050 show clear evidence of Nb5+ signals indicating some unreacted Nb2O5 component in the system. This confirms the earlier report where presence of small amount of unreacted Nb2O5 was predicted.  相似文献   

6.
In this work the effect of different thermal treatments on the transformation behavior of Mn1  xCrxCoGe alloys, with x = 0.15 and 0.20 has been analyzed. The changes in the transformation temperatures have been studied by differential scanning calorimetry (DSC). The results show that the structural transition temperature depends on the previous annealing. However, under the same heat treatment no significant change is observed on the transformation temperatures when replacing Mn by Cr. The microstructural evolution has been monitored using in-situ X-ray diffraction and transmission electron microscopy. The effect of an applied magnetic field on the transformation has been explored by SQUID magnetometry. Two different magnetic transitions are found: a first order paramagnetic (PM) to ferromagnetic (FM) corresponding to the transformation observed by calorimetry and a re-entrant spin glass to ferromagnetic transition.  相似文献   

7.
Both the addition of 0.6% Sc and simultaneous addition of 0.2% Sc and 0.1% Zr exerted a remarkable effect on grain refinement of as-cast Al–Mg alloys, changing typical dendritic microstructure into fine equiaxed grains. Such effect was found to be related to the formation of primary particles, which acted as heterogeneous nucleation sites for α-Al matrix during solidification. Primary particles formed in Al–Mg–Sc–Zr alloy could be identified as the eutectic structure consisting of multilayer of ‘Al3(Sc,Zr)?+?α-Al?+?Al3(Sc,Zr)’, with a ‘cellular-dendritic’ mode of growth. In addition, an attractive comprehensive property of as-cast Al–5Mg alloy due to the addition of 0.2% Sc and 0.1% Zr was obtained.  相似文献   

8.
Herein, we report the effect of silver ions on the physical, antimicrobial and cytocompatibility properties of wet chemically synthesized silver doped Ca10?xAgx(PO4)6(OH)2 (0.0  x  0.5) hydroxyapatites (HAp). Silver ions containing HAp exhibit the comparable density, hardness and enhanced antimicrobial properties, in comparison to parent HAp. The optical absorption measurements confirm the presence of silver ions in the doped compositions, which are responsible for as increased antimicrobial property of doped HAp materials for x > 0.3. The cytotoxicity behavior of the doped HAp was evaluated using mouse fibroblast (L929) cell line. The important result has been that doped HAp (x > 0.3) exhibit statistically (significant) lower cell viability in comparison to undoped HAp. However, no difference in cellular functionality on doped HAp surfaces, in terms of cell adhesion and proliferation could be qualitatively observed in reference to undoped HAp. In order to explain the observed antimicrobial and cell viability properties, the in vitro release of Ag+ ions has been quantified using Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) and solubility was measured by weight loss in acetate buffer solution.  相似文献   

9.
LaMg1 ? xNixAl11O19 (x = 0, 0.25, 0.5, 0.75, 1) ceramics are fabricated by pressureless-sintering method at 1700 °C for 10 h in air. The microstructure and thermo-optical properties of LaMg1 ? xNixAl11O19 ceramics are investigated by the X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. The influence of NiO doping on structure and thermo-optical properties of LaMg1 ? xNixAl11O19 ceramics is investigated. The partial substitution of Ni2+ for Mg2+ results in a significant increase in emissivity at low wavelengths as compared with unmodified LaMgAl11O19. When the Ni2+ content increases to x = 0.75 or above, LaMg1 ? xNixAl11O19 ceramics have a high emissivity value above 0.70 at low wavelengths at 500 °C. The measured emissivity of all LaMg1 ? xNixAl11O19 ceramics shows a similar trend in the wavelength range of 6 to 14 μm.  相似文献   

10.
Mg–Al alloys were prepared via sintering combined with ball milling, and the effect of a transition metal (TM = Ti, V, Ni) on the hydrogen storage properties of these alloys was investigated; the alloys were characterized via X-ray diffraction, pressure composition isotherms, and differential scanning calorimetry. The results showed that the alloys were mainly composed of Mg and the Mg17Al12 phase, and the cell volume of these phases decreased after the addition of TM (TM = Ti, V, Ni), which is attributed to the improved hydrogenation kinetics of Mg–Al alloy. Moreover, the hydrogenation/dehydrogenation temperature of the Mg–Al alloy decreased with the addition of TM (TM = Ti, V, Ni). Ti, Ni, and V acted as a catalyst, thereby lowering the reaction barrier for dehydrogenation and promoting the reversible hydrogenation reaction of the Mg–Al alloy. The onset temperature of dehydrogenation of the Mg–Al–V alloy was ~244 °C, which was 66 °C lower than that of the Mg–Al alloy (~310 °C). And the apparent activation energy of the Mg–Al–V alloy was 80.1 kJ mol?1, where it was 34.6 kJ mol?1 lower than that of Mg–Al alloy.  相似文献   

11.
This study was undertaken to investigate the effect of extrusion temperature on the microstructure and tensile properties of Al metal matrix composite (MMC) containing 16 wt% Al4Sr intermetallic. Microstructural examinations were assessed by the use of optical microscope, scanning electron microscope (SEM) and X-ray diffractometry (XRD). The results showed that hot extrusion with the ratio of 18:1 at 420 °C reduces the maximum length of Al4Sr particles from 222 μm to 35 μm. It was found that by applying extrusion parameters in optimum conditions, uniform distribution of fine Al4Sr intermetallic in Al matrix is obtained. Microstructural evolution also intensified the ultimate tensile strength (UTS) values of the MMC from 54 MPa to 145 MPa. Remarkable result of this study revealed that hot extrusion improves the ductility of the MMC significantly. Fractographic examinations of the composite in as-cast condition showed a complete cleavage fracture surface that changes to more homogenous dimples after hot extrusion process.  相似文献   

12.
The electrode alloys La0.7Mg0.3Co0.45Ni2.55 ? xFex (x = 0, 0.1, 0.2, 0.3, 0.4) are fabricated by casting and rapid quenching techniques. The effects of the substitution of Fe for Ni on the cycle stabilities as well as the structures of the alloys have been investigated thoroughly. The results indicate that the substitution of Fe for Ni significantly enhances the cycle stability of the alloys. Furthermore, the positive impact of such substitution on the cycle stability has been observed to be more pronounced for the as-quenched alloy as compared to that for the as-cast one. Scanning electron microscopy (SEM) studies demonstrate that all the alloys exhibit a multiphase structure comprising of two major phases (La, Mg)Ni3 and LaNi5 along with a residual phase of LaNi2. The substitution of Fe for Ni has been observed to facilitate the formation of a like amorphous structure in the as-quenched alloy. With an increase in Fe contents, a significant grain refinement of the as-quenched alloy and an obvious enlargement in the lattice constants and the cell volumes of the alloys have been noticed.  相似文献   

13.
In this study, the effects of magnesium (Mg) addition to A356 aluminum alloy at different amounts on the microstructure and mechanical properties of this alloy were examined. For the experimental studies, three different alloys (0.43, 0.67 and 0.86 wt%) having various amounts of Mg were prepared through casting process in the form of plates. The plates were homogenized and cooled in the furnace. All the samples were treated with aging process (T6) and then tensile samples were prepared from the homogenized samples. The samples treated with T6 process were characterized by optical microscopy, laser confocal microscopy, Scanning Electron Microscope (SEM), Energy Dispersive Spectrometer (EDS) and X-Ray Diffraction (XRD) examinations as well as hardness measurements and tensile tests. The phases which were formed in the microstructures for different amounts of Mg were examined. It was observed that iron-rich intermetallic compounds were also formed in addition to the phases resulting from the aging process. Fe-rich intermetallic compounds, observed from the fracture surfaces, were found to reduce the tensile strength the alloy. The results also indicate that the tensile strength and hardness of the alloy increase with increasing Mg amount.  相似文献   

14.
We measured the complex refractive index at the wavelength of 10.6 μm with the help of Fourier transform infrared spectroscopy for polycrystalline plates of the following compositions AgCl1−xBrx (0  x  1) and Ag1−xTlxBr1−xIx, where x varied from 0 to 0.05. In order to do it we chose a segment of the spectrum, which was recorded with a high resolution (0.5 cm−1) using the HgCdTe detector and which had a set of 10 identical peaks. It is shown that the real part of the refractive index rises along with increasing the substituting component fraction in the solid solution from 1.99 to 2.17 for AgCl1−xBrx and from 2.17 to 2.24 within the range of TlI mole fraction up to 0.05 for Ag1−xTlxBr1−xIx. We considered errors introduced by the spectrometer resolution and the accuracy rating of the micrometer, which was used to measure sample thickness. It is seen in the spectra, recorded for the second system with a lower resolution and using a deuterated and l-alanine doped triglycine sulfate detector, that increasing the thallium monoiodide fraction results in widening the transmission range towards bigger wavelengths. We also plan to use the obtained refractive index values for simulating mid-infrared optical fibers, the polycrystalline structure of which is close to the structure of the plates under investigation.  相似文献   

15.
Microstructure and mechanical properties of as-cast and as-extruded Al–Si–Mg alloys with different Si content are investigated by tensile test, microstructure observation. High density of Si particles in the Al alloys can induce dynamic recrystallization during hot extrusion and it becomes more matured with an increase in the density of Si particles. The tensile strength of as-cast and as-extruded alloys can be improved with the increase of Si content and hot extrusion make the elongation of alloys increase dramatically. Considerable grain refining effect caused by recrystallization occurred during hot extrusion of S2 (equivalently commercial A356 alloy) and S3 (near eutectic alloy) alloys plays an important role in the improvement of elongation. A good combination of strength and elongation for the as-extruded S3 alloy indicates that near eutectic Al–Si alloys can be hot-extruded to produce aluminum profiles with high performance.  相似文献   

16.
In this article, the structure of Al-18Si alloy was modified by thermal-rate treatment technique at 930 °C based on the DSC result. The mechanical properties of Al–18Si alloy were improved remarkable by a complex technique with alloying and thermal-rate treatment. A new treating technique named as complex modificating technique was proposed, and the performance of this technique on Al–18Si–1.5Cu–0.6Mg alloy was investigated. The results show that primary Si can be refined when Al–P master alloy was added into the melt at 770 °C after thermal-rate treatment. Compared with the conventional casting technique by which the melt of alloy was unmodified, better refinement effect can be obtained with the combination of alloying and complex modificating technique: the size of primary Si is decreased from 66 to 16 μm, the tensile strength increased by 75.94% and the brinell hardness by 66.59%. Moreover, the mechanism of the complex modificating technique was also discussed.  相似文献   

17.
Combustion synthesis was adopted to successfully synthesize molybdenum–silicon–chromium (Mo?Si?Cr) alloys by the mode of self-propagating high-temperature synthesis (SHS). The experimental study of combustion synthesis of Mo?Si?Cr alloys was conducted on elemental powder compacts. Powder compacts with nominal compositions including MoSi2, (Mo0.95Cr0.05)Si2, (Mo0.90Cr0.10)Si2, (Mo0.85Cr0.15)Si2, (Mo0.80Cr0.20)Si2, (Mo0.75Cr0.25)Si2 and (Mo0.70Cr0.30)Si2 were employed in combustion synthesis experiments. The combustion mode, combustion temperature, flame-front propagation velocity and product structure were investigated. The results showed that Mo?Si?Cr alloys were synthesized by an unsteady state combustion mode with a spiral-trajectory reaction front. The peak combustion temperature reduced with the addition of Cr to Mo–Si system. The flame-front propagation velocity decreased with an increase in Cr content of the powder compact. The X-ray diffraction (XRD) results showed that the crystal structure of the combustion product changed from Cllb-type structure (Mo0.90Cr0.10)Si2 to C40-type structure (Mo0.85Cr0.15)Si2 with increase in Cr content of Mo–Cr–Si alloys. The intensities of diffraction peaks of the C40-type phase gradually increased with increase in Cr content.  相似文献   

18.
In this paper, the effect of aluminium on microstructure and mechanical properties of as-cast magnesium–manganese alloy has been investigated by means of X-ray diffraction, optical microscopy and scanning electron microscopy. The results reveal that various Al–Mn intermetallic compounds form with an increase of Al content. As a result, microstructure of AM11 alloy has been effectively refined due to the formation of Al8Mn5 phase along the grain boundary, while Al addition is explained as the main reason on refining the microstructure of AM91 alloy due to its higher grain growth restriction factor value of ~4.32. The tensile yield strength (TYS) has been improved steadily from 27.4 to 122.9?MPa with increasing Al content, because of the combined effects of grain boundary strengthening, solid solution strengthening and precipitation hardening behaviours.  相似文献   

19.
In this work, layered lithium-excess materials Li1+xNi0.5Mn0.3Co0.2O2+δ (x = 0, 0.05, 0.10 and 0.15), of spherical morphology with primary nanoparticles assembled in secondary microspheres, were synthesized by a coprecipitation method. The effects of lithium content on the structure and electrochemical performance of these materials were evaluated by employing X-ray diffraction (XRD), inductive coupled plasma (ICP), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge tests. It is found that Li1.10Ni0.5Mn0.3Co0.2O2+δ, i.e., Li[(Ni0.5Mn0.3Co0.2)0.95Li0.05]O2 showed the best electrochemical performance due to the highly ordered layered structure, reduced cation mixing and the lowest charge transfer resistance. Li1.10Ni0.5Mn0.3Co0.2O2+δ delivered a discharge capacity of 145 mA h g?1 at 125 mA g?1 in the cut-off voltage of 2.5–4.3 V, and had a capacity retention of 100% after 50 cycles at room temperature.  相似文献   

20.
The effect of solution and ageing heat treatment on the microstructure and mechanical properties of the die-cast Al–9 wt.%Si–3.5 wt.%Cu alloys containing 0.1–1.0 wt.% Fe was investigated. The results showed that the dendritic primary α-Al phase was varied from 20 to 100 μm in size and the globular α-Al grains were smaller than 10 μm in size. The Fe-rich intermetallics exhibited coarse compact or star-like shapes with the sizes from 10 to 20 μm and the fine compact particles at an average size of 0.75 μm. The solution treatment of the alloys could be achieved in a short period of time, typically 30 min at 510 °C, which dissolved the Cu-rich intermetallics into the primary α-Al phase and spheroidised the eutectic Si phase. During the subsequent ageing treatment, numerous fine precipitates of θ′ and Q′ phases were formed to provide effective strengthening to the α-Al phase, significantly improving the mechanical properties. Therefore, Fe content in the die-cast Al–Si–Cu alloys needs to be controlled at a low level in order to obtain the improved ductility and strength under solution and aged condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号