首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work considers the application of an integrated pervaporation process to improve the pervaporation performance of acetic acid over water. This integrated pervaporation process was based on a plain PDMS membrane with a hydrophobic ionic liquid composed of a heterocyclic cation and [PF6]? anions. The hydrophobic ionic liquid was introduced as the third phase between the aqueous phase and the plain PDMS membrane for improving mass-transfer of acetic acid from its aqueous matrix to the PDMS membrane. The primary results indicated that the ionic liquid as an extractant prior to pervaporation was favorable for improving the permeate selectivity and the permeate flux of acetic acid compared with using only a plain PDMS membrane. This performance could be attributed to the acetic acid concentrated and the water molecules rejected by ionic liquid prior to pervaporation. Extraction of a real effluent containing acetic acid from an antibiotic pharmaceutical plant was carried out using the above integrated pervaporation, and the results imply that this integrated pervaporation process could be scaled up for recovering acetic acids over its water-rich effluents.  相似文献   

2.
乙醇/水及乙酸/水体系的渗透汽化分离   总被引:1,自引:0,他引:1  
以乙醇/水及乙酸/水体系为研究对象,研究了渗透汽化过程中料液浓度、温度因素对分离效果的影响;结合乙醇、乙酸对聚二甲基硅氧烷(PDMS)膜的溶胀特性差别,分析并讨论了两者在渗透汽化过程中可能的分离机理. 研究表明,PDMS膜能够优先透醇,但乙酸分子的缔合物以及羧基与疏水PDMS膜高分子链的强相互作用降低了其在膜中的扩散速率,使低温时乙酸/水体系优先透水,只有当温度在60℃以上时才表现出优先透酸,且分离效果较差.  相似文献   

3.
In this study, a hybrid hydrophobic/hydrophilic pervaporation process was employed to separate and purify isobutanol from its dilute aqueous solutions. For this purpose, composite polydimethylsiloxane membranes were initially used for the recovery of isobutanol by hydrophobic pervaporation. Then the hydrophilic pervaporation with a composite polyvinyl alcohol membrane was utilized to separate water from the organic phase of the permeate stream of the hydrophobic pervaporation. The effect of feed flow rate on the performance of pervaporation was investigated. The resistance in series model was also applied to calculate the transport resistances through the composite membranes. It was observed that an enhancement in the feed flow rate led to higher permeation flux and selectivity of the more permeable component, while the flux of the less permeable component was almost constant. Also, the ratio of liquid boundary layer resistance to membrane layer resistance decreased by an increase in the feed flow rate. The isobutanol with a purity of higher than 99 wt.% was produced by the hybrid hydrophobic/hydrophilic pervaporation technique from a 2 wt.% aqueous isobutanol solution.  相似文献   

4.
From the reference[1] it is known that the addition of silicalite-1 in silicone rubber membranes results in an increase of both flux and selectivity for alcohol in the separation of alcohol/water by pervaporation.In order to enhance performance of pervaporation toward the aqueous solution of acetic acid,incorporation of carbon molecular sieve(CMS)into a PDMS membrane was investigated. CMS is widely used in adsorption processes because of its high selectivity toward certain compounds[2]. It was assumed that the flux and selectivity of pure PDMS membrane could be enhanced owing to the preferential adsorption of CMS to organics.CMS content in the membrane and several important pervaporation operation parameters, including feed concentration of acetic acid, and feed temperature, were investigated.  相似文献   

5.
为探究出适合分离水中的乙酸正丁酯和乙酸乙酯的新型渗透汽化膜材料,选用沸石ZSM-5 对聚二甲基硅氧烷(PDMS)材料进行填充改性,以聚偏氟乙烯(PVDF)为支撑层,采用刮涂法制备PDMS/ZSM-5/PVDF复合膜渗透汽化分离水中的乙酸正丁酯和乙酸乙酯。采用SEM、接触角测量仪、FTIR、TGA和XRD等对膜材料物理化学性能进行表征,考察了膜材料的溶胀行为及渗透汽化性能。结果表明,ZSM-5在 PDMS 膜中分散均匀,且没有发生化学作用,并提高了膜材料的疏水性和热稳定性。随着ZSM-5添加量的增加,膜在乙酸正丁酯和乙酸乙酯的溶胀度和待分离组分在膜材料中的扩散速率不断增加。随着进料浓度和温度的增加,渗透通量不断增大,分离因子先增大后减小。随着ZSM-5在PDMS/ZSM-5/PVDF复合膜中含量的增加,总渗透通量增加,而分离因子呈现先增加后减小的趋势。当添加量为10%(质量)时,分离因子达到最大值。对于乙酸正丁酯/水体系,渗透通量和分离因子最大值分别为319 g·m -2·h -1和131;而对于乙酸乙酯/水体系,渗透通量和分离因子最大值分别为1385 g·m -2·h -1和121。  相似文献   

6.
乙酸与丁醇酯化反应和渗透蒸发耦合过程研究   总被引:6,自引:0,他引:6  
以硫酸锆催化乙酸和丁醇的酯化反应为例对渗透蒸发和酯化反应耦合过程进行研究 ,考察了温度、反应物初始摩尔比、膜面积与反应液体积比和催化剂浓度对耦合过程的影响。  相似文献   

7.
《分离科学与技术》2012,47(12):2894-2914
Abstract

In order to simultaneously achieve both high permselectivity and permeability (flux) for the recovery of aromatic compounds such as phenol from aqueous streams, a composite organophilic hollow fiber based pervaporation process using PDMS/PEBA as two-layer membranes has been developed. The process employed a hydrophobic microporous polypropylene hollow fiber, having thin layers of silicones (PDMS) and PEBA polymers coating on the inside diameter. The composite membrane module is used to investigate the pervaporation behavior of phenol in water in a separate study; and that of a mixture of phenol, methanol, and formaldehyde in an aqueous stream (a typical constituent of wastewater stream of phenol-formaldehyde resin manufacturing process) in another study. The fluxes of phenol and water increase relatively linearly with increasing concentration especially at low feed concentration, and exhibit a near plateau with further increase in concentration. As a result, the phenol/water separation factor decreases as the feed concentration increases. Significant improvement in phenol/water separation factor and phenol flux is achieved for this two-layer (PDMS/PEBA) membranes as compared to that achieved using only PDMS membrane. The phenol and water fluxes and the separation factor are highly sensitive to permeate pressure as all decrease sharply with increase in permeate pressure. For this membrane, an increase in temperature increases the separation factor, and also permeation fluxes of phenol and water. An increase in feed-solution velocity does not have a significant effect on phenol and water fluxes, and also on the separation factor at least within the range of the feed-solution velocity considered. In the study of pervaporation behavior of a typical constituent of wastewater stream of phenol-formaldehyde resin manufacturing process, phenol permeation shows a much higher flux and a higher increase in flux with increase in concentration is also exhibited as compared to that exhibited by methanol permeation. This thus indicates that the membrane is more permeable to phenol than to methanol and formaldehyde.  相似文献   

8.
Sulfated zirconia‐poly(vinyl alcohol) membranes were prepared, and pervaporation performances for aqueous organic mixtures were investigated. These hydrophilic membranes were formed by crosslinking poly(vinyl alcohol) (PVA) with the solid acid of sulfated zirconia by an acid‐catalyzed reaction. The pervaporation performances were measured as a function of the content ratio of sulfated zirconia to PVA, which affected the degree of swelling for water and the crosslinking density of the membrane. The membrane selectivity in pervaporation of aqueous organic mixtures increased in order of acetic acid < ethanol < 2‐ethoxyethanol without sacrificing the permeation rate, depending on their feed compositions. The effects of feed temperature and concentration on the membrane performance were also significant. It was found that sulfated zirconia in the membrane preparation played an important role as a filler material as well as an effective crosslinking or insolubilization agent in improving and controlling the membrane performance, i.e., permeation rate and selectivity. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1450–1455, 2001  相似文献   

9.
In this study, a hydrophobic polymeric polydimethylsiloxane (PDMS) membrane was used for the pervaporative separation of bioethanol produced from fermentation of lignocellulosic biomass (waste newspaper) and glucose. As a preliminary study, the pervaporation permeation performance showed strong dependence on feed concentration and temperature. The pervaporation of bioethanol produced by the fermentation of waste newspaper by Saccharomyces cerevisiae decreased process performance. However, the process performance was restored reversibly by water cleaning. The pervaporative separation of bioethanol from the fermentation of waste newspaper was carried out without any significant decreasing process performance in the study.  相似文献   

10.
Pervaporation membrane with preferential permeation for organic compounds over water was prepared and characterized. Selection of membrane material and the effects of polydimethylsiloxane (PDMS), cross-linker, and catalyst concentrations on performances of pervaporation membrane at room temperature were discussed. In addition, the time of cross-linking, and the kinds of basic plate in the process of preparation were tested. The formulation of pervaporation membrane material was determined. Through the characterization of membrane by infrared spectrometry(IR), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray diffraction(XRD), it is proved that the structures and characters are suitable for the pervaporation process. Experiments also demonstrate that the permeate flux and separation factor are suitable for the process.  相似文献   

11.
Since pervaporation process is the coupling of solution and diffusion mechanisms, a sorption study was carried out with membranes prepared by cross-linking polyvinylalcohol (PVA) and polidimethylsiloxane (PDMS). Tartaric acid (Tac) was used as the cross-linking agent for PVA, and a commercial cross-linking agent was used for PDMS. Sorption experiments were carried out at 30-50°C temperature range in pure water and ethyl acetate using the films prepared. The PVA and PDMS films prepared preferentially sorb water and ethylacetate, respectively. A pervaporation study at 30°C was carried out for pure ethylacetate and pure water, and mixtures of ethylacetate containing 2 and 2.5 wt% water using 100 μm thick PVA membrane. The results indicate that the PVA membrane prepared is extremely selective for water.  相似文献   

12.
A new silicone pervaporation membrane for the removal of one of trace organies, 1,2-dichloroethane from water has been developed using polydimethylsiloxane (PDMS) and oligomeric silylstyrene as a crosslinking agent of PDMS. Optimal conditions for fabricating the best membrane were determined from swelling measurements ard pervaporation experiments and then the membrane was characterized at different membrane thickness and operating conditions. In the pervaporation separation of 55–70 ppm of l,2-dichlorocthanc aqueous mixtures, the developed membrane has flux of 2.5–330 g/(m2.h) and selectivity of 230–1750 depending on membrane thickness, permeate pressure and operating Temperature. Water permeation through thin membrane was found to be subjected to significant desorption resistance, while the desorption resistance and thermodynamic factors as well as the concentration polarization of the organic at the boundary layer in feed can affect the organic permeation, depending on membrane thickness. Selectivity change with permcaic pressure depends on membrane thickness: at small membrane thickness range, selectivity increases with permeate pressure and at large thickness region it decreases. From the Arrhenius plots of each component fluxes, the permeation activation energies were determined. Through an analysis of the permeation activation energies of each components, the desorption resistance as well as the effects of the thermodynamic factors on permeation was qualitatively characterized.  相似文献   

13.
A coupled fermentation/pervaporation process for reliable production of concentrated ethanol was studied using ethanol permselective silicalite membranes coated with two types of silicone rubber, KE‐45 and KE‐108, as a hydrophobic material. Ethanol recovery was greatly improved by using a membrane coated with KE‐45 silicone rubber. The recovered ethanol concentration in the permeate was 67% (w/w), and the amount of recovered ethanol from the broth was more than 10 times higher than that using a non‐coated membrane. Succinic acid and glycerol, by‐products created during fermentation, interfered with the pervaporation performance of the coated membrane when used to separate an ethanol/water solution. Copyright © 2003 Society of Chemical Industry  相似文献   

14.
《分离科学与技术》2012,47(7):843-861
Abstract

Several organophilic membranes were utilized to selectively permeate ethanol, n-butanol, and t-butanol from dilute aqueous mixtures using pervaporation (PV). Poly[1-(trimethylsilyl)-1-propyne] (PTMSP) membranes were utilized to investigate the effect of temperature, pressure, and start-up/transient time on the separation of aqueous ethanol mixtures. Results indicate optimal ethanol selectivity and flux at the lowest permeate-side pressure. Increased temperature significantly enhanced the productivity of PTMSP, but extended operation of the PTMSP membranes at high temperatures resulted in flux degradation. Two other hydrophobic membranes, poly(dimethyl siloxane) (PDMS) and a poly(methoxy siloxane) (PMS) composite, were used to separate n-butanol and t-butanol from dilute aqueous mixtures. The effect of feed concentration on the flux and selectivity was investigated. Both membranes were found to be more permeable to n-butanol than t-butanol. The PDMS membrane was found to be more effective than the PMS membrane in terms of flux and selectivity. The effect of membrane thickness on water permeation and on organic selectivity was also studied using the PDMS membrane.  相似文献   

15.
BACKGROUND: In this work, the selective extraction of ethanol by pervaporation through a POMS (polyoctylmethyl siloxane) hydrophobic membrane supplied by GKKS (Germany) was investigated. First, binary ethanol aqueous solutions were studied considering the effect of ethanol feed concentration (0–11 wt%) and operating temperature (307.55–326.35 K). The effect of some by‐products of the ethanol fermentation, such as glycerol, succinic acid, butanol and acetone, on the pervaporation performance has been analyzed. RESULTS: For binary ethanol aqueous solutions, it was found that water permeation flux remained more or less constant while ethanol permeation flux increased continuously when increasing ethanol feed concentration. However, water and ethanol permeances did not change much in the concentration and temperature range studied. It was observed that the addition of glycerol and succinic acid sharply decreased the total permeation flux while ethanol concentration in the permeate was hardly affected. The addition of butanol and acetone resulted in a lower separation factor for ethanol through the POMS membrane. CONCLUSIONS: For ethanol aqueous solutions the POMS membrane was found to be selective towards ethanol, although it does not present higher separation factors than distillation in the concentration range covered in this work. The presence of other components of the fermentation broth has a great influence in the pervaporation behavior. Further work must be done on the study of multicomponent and real mixtures. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
Poly(1-phenyl-1-propyne)/polydimethysiloxane (PPP/PDMS) graft copolymer membranes having various PDMS content were prepared by solvent casting method, and the permeation characteristics at pervaporation were examined upon the aqueous solutions containing organic liquids such as alcohols, acetone, dioxane, acetonitrile, pyridine, and DMF. At pervaporation of ethanol/water mixture, preferential permeation of ethanol was observed for all the copolymer membranes, although PPP membrane showed water permselectivity. The permselectivity of the copolymer membrane also depended on operation temperature, but was independent on the thickness of the membrane. Furthermore, an excellent permselectivity of organic liquids was observed at the pervaporation of several organic liquid/water mixtures except in the case of DMF/water mixture. Observed high selectivity is thought to be due to the depression of the membrane swelling and the high solubility of the liquids into the membrane.  相似文献   

17.
Using a pervaporation process, a surface-modified hydrophobic membrane was used for recovery of esters which are volatile organic flavor compounds; ethyl acetate (EA), propyl acetate (PA), and butyl acetate (BA). A surface-modified tube-type membrane was used to evaluate the effects of the feed concentration (0.15–0.60 wt%) and feed temperature (30–50 °C) on the separation of EA, PA, and BA from dilute aqueous solutions. The permeation flux increased with the increasing feed ester concentration and operating temperature. EA, PA, and BA in the permeate were concentrated up to 9.13–32.26, 11.44–34.95, and 14.96–36.37 wt%, respectively. The enrichment factors for the 0.15–0.60 wt% feed solution of EA and BA were in the range of 48.5-62.8 and 97.7-101.5, respectively. Phase separation occurred in the permeate stream because the ester concentration in the permeate was above the saturation limit. This meant that selectivity of the membrane was high enough for the recovery of esters from dilute aqueous solution, even though the enrichment factor of the membrane was lower than that of non-porous PDMS membrane. The fluxes of EA, PA, and BA at 0.60 wt% (6,000 ppm) feed concentration and 40 °C were 254, 296, and 318 g/m2.hr, which are much higher than those obtained with polymer membranes. In the case of non-porous PDMS at feed concentrations of 90-4,800 ppm and at 45 °C, it was reported that the permeate flux of EA was 1.1–5.8 g/m2.h. Compared to non-porous PDMS, the surface-modified membrane investigated in this study showed a much higher flux and enough selectivity of esters.  相似文献   

18.
Since pervaporation performance of ethanol‐permselective silicalite membrane, which is an aluminum‐free hydrophobic zeolite, in the separation of fermentation broths by yeast are negatively affected by succinic acid, the potential of pervaporation using silicone rubber‐coated silicalite membranes of ethanol fermentation broths, not containing succinic acid, by Zymomonas mobilis was investigated for the reliable production of concentrated bioethanol. In the separation of fermentation broths, the pervaporation performance was influenced by nutrients used for the preparation of fermentation broths. In the separation of a broth prepared with yeast extract, pervaporation performance was greatly compromised by accumulation of a substance(s) having an ultraviolet absorption maximum at approximately 260 nm not only in total flux, but also in permeate ethanol concentration compared to the separation of binary ethanol/water mixtures. When supplying a prepared broth with corn steep liquor without the accumulation of a substance(s) having an ultraviolet absorption maximum at approximately 260 nm, the permeate ethanol concentration did not decrease. Treating the prepared broth with activated carbon was effective in restraining the decrease in total flux. Pervaporation performance is also deteriorated by the adsorption of lactic acid contained in corn steep liquor onto the silicalite crystals. In the separation of ternary mixtures of ethanol/water/lactic acid, accomplished by adjusting the ternary mixtures to pH > 5, more than 90% of the permeation flux in the separation of binary ethanol/water mixtures was obtained, and the permeate ethanol concentration was comparable to that obtained in the separation of binary mixtures. For stably performing pervaporation, it is important to prepare ethanol fermentation broths by Zymomonas mobilis in which lactic acid concentration is as low as possible. Copyright © 2007 Society of Chemical Industry  相似文献   

19.
那沙沙  李卫星  邢卫红 《化工学报》2016,67(9):3730-3737
为提高海藻酸钠(SA)膜的渗透汽化分离性能,分别采用纳米氧化铝、纳米氧化锆和纳米氧化钛对SA膜进行改性,对比分析了3种不同杂化膜渗透汽化分离性能的差异,并将分离性能较好的杂化膜应用到乙酸与乙醇酯化反应脱水的体系中。系统考察了无机纳米粒子含量对SA膜渗透汽化分离性能的影响,对杂化膜进行了接触角、傅里叶红外(FTIR)、扫描电子显微镜(SEM)、热重/差示扫描量热(TG/DSC)、X射线衍射(XRD)和拉伸强度等表征与分析。结果表明,无机纳米粒子能提高SA膜的热稳定性、机械强度和渗透通量,当无机纳米粒子与SA质量比为0.3时,掺杂TiO2、ZrO2和Al2O3的杂化膜二碘甲烷的接触角依次升高,同时渗透通量也依次升高。SA-0.3Al2O3杂化膜亲水性较好,然而SA-0.3ZrO2杂化膜分离性能最优,50℃下分离水含量10%的乙醇-水溶液,膜渗透通量达到336 g·m-2·h-1,渗透侧水含量99.97%,分离因子29990。酯化反应脱水实验表明,在80℃时,酯化反应脱水实验乙酸转化率均高于无脱水实验乙酸转化率,平衡转化率不断被打破,反应12 h后,转化率由平衡时的79.3%提高到93.9%。  相似文献   

20.
Silica‐filled polydimethylsiloxane (PDMS) composite membranes are prepared on a polytetrafluoroethylene support structure. The structure and the performance of the membranes are characterized by scanning electron microscope, Fourier transform infrared spectroscopy, X‐ray diffraction, and thermogravimetry. The pervaporation process for acetic/water separation is performed within the PDMS membranes. The vulcanization temperature was found to have a great influence on the separation performance of the membrane. The addition of silica can significantly improve the pervaporation flux and enhance the thermal stability of the membrane. With an increase in the feed temperature, selectivity decreases and permeation flux increases. Performed with a pure PDMS membrane vulcanized at 30°C, the separation factor at first will increase, then decrease when the feed flow rate was increased from 14 to 38 L · h?1. The maximum separation factor is achieved when the feed flow rate is 26 L · h?1. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号