首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Serotonin (5-hydroxytryptamine, 5-HT) synthesis was determined in vivo by measuring the accumulation of 5-hydroxytryptophan (5-HTP) in rat frontal cortex after inhibition of aromatic amino acid decarboxylase by administrative of m-hydroxybenzylhydrazine (NSD 1015) (100 mg/kg, i.p.). The selective 5-HT reuptake inhibitor, citalopram, the 5-HT1A agonists, (+/-) 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT), ipsapirone, gepirone and the 5-HT1A/B agonist, 7-trifluoromethyl-4(4-methyl-1-piperazinyl-pyrolo[1,2-a]-quinox ali ne (CGS 12066B), the 5-HT1A/B ligands and beta-adrenoceptor antagonists, (+/-) pindolol and (+/-) alprenolol, and the non-selective 5-HT ligands, m-chlorophenylpiperazine (mCPP) and metergoline, all inhibited the synthesis of 5-HT. The 5-HT1A/5-HT2 antagonist, spiperone, alone, had no effect on basal 5-HT synthesis, however it attenuated the effect of 8-OH-DPAT by 56% and CGS 12066B by 39% but only barely that of citalopram by 17%. The selective 5-HT1A antagonist, WAY 100635, which did not modify by itself 5-HT synthesis, had no effect on citalopram-induced reduction of 5-HT synthesis. Neither the 5-HT2 agonist, (+/-)1-(2,5-dimethoxy-4-indophenyl)-2-aminopropane (DOI) nor the 5-HT2 antagonist, ritanserin, had any effect on the synthesis of 5-HT. In addition, ritanserin did not modify the inhibitory effect of citalopram. Methiothepin was the only compound to increase 5-HT synthesis. These results suggest that the effect of citalopram on the synthesis of 5-HT is not mediated by 5-HT1A or 5-HT2 receptors and that other receptors may be involved.  相似文献   

2.
The serotonin (5-HT)(2A/2c) agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), the 5-HT2C agonist 6-chloro-2-[1-piperazinyl]-pyrazine and the 5-HT2A partial agonist m-chloro-phenylpiperazine (mCPP) were injected bilaterally into the medial prefrontal cortex of male rats. DOI and mCPP, but not 6-chloro-2-[1-piperazinly]-pyrazine, elicited a dose-dependent head-twitch response (HTR). DOI-induced HTR had an ED50 of 12.8 nmoles/0.5 microl/side and was inhibited by the 5-HT2A antagonists ketanserin and MDL 100,907 but was not blocked by pretreatment with the selective 5-HT(2C/2B) antagonist SDZ SER 082. The HTR to mCPP demonstrated a bell-shaped dose-response curve with an ED50 of 1.5 nmoles/0.5 microl/side and a peak effect after 3 nmoles/side. The response to mCPP was greatly diminished by both ketanserin and MDL 100,907 and was partially reversed by SDZ SER 082. These findings suggest that the HTR produced by the direct injection of serotonergic agonists into the medial prefrontal cortex is, in part, mediated by the activation of 5-HT2A receptors. Pretreatment of rats with the 5-HT1A agonist (+/-)-8-hydroxy-dipropylaminotetralin hydrobromide inhibited the HTR to DOI. This is consistent with other evidence that suggests a functional antagonism between 5-HT1A and 5-HT2A receptor activation. The HTR to DOI was potentiated by the novel 5-HT1A selective antagonist WAY 100,635, which suggests that 5-HT1A receptors tonically regulate this behavioral response to stimulation of cortical 5-HT2A receptors.  相似文献   

3.
The administration of the 5-hydroxytryptamine (5-HT) precursor 5-hydroxytryptophan (5-HTP) (25 mg/kg i.p.), in combination with an inhibitor of peripheral 5-HTP decarboxylase, produced a dose-dependent increase in the ejaculation latency of male rats, and this effect was enhanced by additional treatment with the 5-HT1 receptor antagonist (-)-pindolol (2 mg/kg s.c.). The 5-HT2A/C receptor agonist (+/-) 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (0.125-0.5 mg/kg s.c.) did not by itself affect male ejaculatory behavior, but additional treatment with (-)-pindolol (2 mg/kg s.c.) produced a dose-dependent decrease in number of ejaculating animals. The increased ejaculation latency produced by 5-HTP was fully antagonized by treatment with the 5-HT1B receptor antagonist isamoltane (4 mg/kg s.c.), but not by ritanserin (2 mg/kg s.c.) treatment. The selective 5-HT1A receptor antagonist WAY-100635 (0.15 mg/kg s.c.) enhanced the inhibitory actions of 5-HTP on the male rat ejaculatory behavior, and this dose of WAY-100635 fully antagonized 8-OH-DPAT-induced facilitation (0.25 mg/kg s.c.) of the ejaculatory behavior. WAY-100635 (0.04-0.60 mg/kg s.c.) did not, by itself, significantly affect male rat sexual behavior. Taken together, the results suggest an inhibitory role for postsynaptic 5-HT1B receptors in the effects produced by 5-HTP on male rat ejaculatory behavior. Furthermore, 5-HTP-induced inhibition of male rat ejaculatory behavior is partially controlled by stimulation of inhibitory 5-HT1A autoreceptors, since the effects of 5-HTP were accentuated by treatment with (-)-pindolol, as well as by the more selective 5-HT1A receptor antagonist WAY-100635.  相似文献   

4.
1. It has been hypothesized that 5-HT1A autoreceptor antagonists may enhance the therapeutic efficacy of SSRIs and other antidepressants. Although early clinical trials with the beta-adrenoceptor/5-HT1 ligand, pindolol, were promising, the results of recent more extensive trials have been contradictory. Here we investigated the actions of pindolol at the 5-HT1A autoreceptor by measuring its effect on 5-HT neuronal activity and release in the anaesthetized rat. 2. Pindolol inhibited the electrical activity of 5-HT neurones in the dorsal raphe nucleus (DRN). This effect was observed in the majority of neurones tested (10/16), was dose-related (0.2-1.0 mg kg(-1), i.v.), and was reversed by the 5-HT1A receptor antagonist, WAY 100635 (0.1 mg kg(-1), i.v.), in 6/7 cases tested. 3. Pindolol also inhibited 5-HT neuronal activity when applied microiontophoretically into the DRN in 9/10 neurones tested. This effect of pindolol was current-dependent and blocked by co-application of WAY 100635 (3/3 neurones tested). 4. In microdialysis experiments. pindolol caused a dose-related (0.8 and 4 mg kg(-1), i.v.) fall in 5-HT levels in dialysates from the frontal cortex (under conditions where the perfusion medium contained 1 microM citalopram). In rats pretreated with WAY 100635 (0.1 mg kg(-1), i.v.), pindolol (4 mg kg(-1), i.v.) did not decrease, but rather increased 5-HT levels. 5. We conclude that, under the experimental conditions used in this study, pindolol displays agonist effects at the 5-HT1A autoreceptor. These data are relevant to previous and ongoing clinical trials of pindolol in depression which are based on the rationale that the drug is an effective 5-HT1A autoreceptor antagonist.  相似文献   

5.
The role of serotonin 5-HT? receptors (5-HT?R) in the discriminative stimulus effects of fenfluramine was investigated. Male Sprague-Dawley rats were trained to discriminate (±)-fenfluramine (2 mg/kg ip) from saline using a 2-lever, water-reinforced paradigm. Drug-lever responding after fenfluramine was dose-dependent. The 5-HT2C/1BR agonist mCPP and the 5-HT2CR agonist MK 212 fully substituted, whereas the 5-HT2A/2CR agonist DOI partially substituted, for the training drug. The 5-HT2BR agonist BW 723C86 engendered saline-lever responding. The 5-HT2C/2BR antagonist SB 206553 completely antagonized the fenfluramine discrimination as well as the full substitutions of mCPP and MK 212 and the partial substitution of DOI. The selective 5-HT2AR antagonist M100907 partially suppressed the stimulus effects of fenfluramine, mCPP, and MK 212 and almost fully attenuated the partial substitution of DOI. RS 102221, a selective 5-HT2CR antagonist that does not cross the blood-brain barrier, did not alter the fenfluramine cue. Results demonstrate that the discriminative stimulus effects of fenfluramine are centrally mediated by 5-HT2CR and to some extent by 5-HT2AR. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
We investigated the effect of 8-hydroxy-2-(N,N-dipropylamino)tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, on the induction of long-term potentiation in rat visual cortex slices. Perfusion of 8-OH-DPAT (0.1-10 microM) did not affect layer II/III field potentials evoked by test stimulation of layer IV, but significantly reduced long-term potentiation induced by tetanic stimulation. The inhibitory effect of 8-OH-DPAT was blocked by the 5-HT1A receptor antagonist, pindolol (10 microM), but not by the 5-HT2,7 receptor antagonist, ritanserin (100 microM), nor by the 5-HT3,4 receptor antagonist, MDL72222 (100 microM). These results suggest that the rat visual cortex long-term potentiation is inhibited by 5-HT1A receptor stimulation.  相似文献   

7.
The 5-HT2B receptor agonist, BW 723C86 (10, 30(mg/kg i.p. 30 min pre-test), increased the number of punishments accepted in a rat Vogel drinking conflict paradigm over 3 min, as did the benzodiazepine anxiolytics, chlordiazepoxide (2.5-10 mg/kg p.o. 1 h pre-test) and alprazolam (0.2-5 mg/kg p.o. 1 h pre-test), but not the 5-HT2C/2B receptor agonist, m-chlorophenylpiperazine (mCPP, 0.3-3 mg/kg i.p) or the 5-HT1A receptor agonist, buspirone (5-20 mg/kg p.o. 1 h pre-test). The effect of BW 723C86 was unlikely to be secondary to enhanced thirst, as BW 723C86 did not increase the time that rats with free access to water spent drinking, nor did it reduce sensitivity to shock in the apparatus. The anti-punishment effect of BW 723C86 was opposed by prior treatment with the 5-HT2/2B receptor antagonist, SB-206553 (10 and 20 mg/kg p.o. 1 h pre-test), and the selective 5-HT2B receptor antagonist, SB-215505 (1 and 3 mg/kg p.o. 1 h pre-test), but not by the selective 5-HT2C receptor antagonist, SB-242084 (5 mg/kg p.o.), or the 5-HT1A receptor antagonist, WAY 100635 (0.1 or 0.3 mg/kg s.c. 30 min pre-test). Thus, the anti-punishment action of BW 723C86 is likely to be 5-HT2B receptor mediated. This is consistent with previous reports that BW 723C86 exhibited anxiolytic-like properties in both the social interaction and Geller-Seifter conflict tests.  相似文献   

8.
Flibanserin (BIMT 17) has been described as a 5-HT1A agonist with preferential affinity for postsynaptic 5-HT1A receptors and as a 5-HT2A antagonist. Indeed, using the forskolin-stimulated cAMP accumulation technique, flibanserin but not the 5-HT1A agonists buspirone and 8-OH-DPAT had agonistic activity at postsynaptic 5-HT1A receptors in the cerebral cortex. The present in vivo electrophysiological study investigated the agonistic properties of this novel compound in pre- and postsynaptic areas of the anesthetized rat brain using local microiontophoretic application and systemic administration. The inhibition induced by either local or intravenous administration of flibanserin was current- and dose-dependent. Based on the ability of 5-HT1A antagonists to block or reverse the inhibitory action of the compound, the effect of flibanserin was shown to be mediated via 5-HT1A receptors. In addition, as determined by the concurrent microiontophoretic application of flibanserin and 5-HT, flibanserin behaved as a full agonist in the dorsal raphe nucleus (DRN) and the medial prefrontal cortex (mPFC), but as a partial agonist in the CA3 region of the hippocampus. Based on neuronal responsiveness observed with the local microiontophoretic application of flibanserin, it was found that the agonist was most potent on 5-HT1A receptors in the hippocampus, followed by the mPFC and DRN (I.T50 values: 260, 1,260, and 1,365 nanocoulombs, respectively). However, based on the ED50 values obtained from intravenous administration of the drug, flibanserin was most potent in the DRN followed by the hippocampus and mPFC (ED50 values: 239, 1,414, and 2,984 micrograms/kg, respectively). Therefore, flibanserin presented a marked selectivity for postsynaptic 5-HT1A receptors when applied locally, but not when administered intravenously. It remains to be determined if flibanserin preferentially activates postsynaptic 5-HT1A receptors upon sustained systemic administration.  相似文献   

9.
The novel selective 5-HT1A receptor antagonist radioligand [3H]WAY 100635 ([O-methyl-3H]N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2- pyridyl)cyclohexane-carboxamide) was injected i.v. to mice in an attempt to label in vivo central 5-HT1A receptors. Although 5 min after the i.v. injection of [3H]WAY 100635 (4-7.6 muCi per mouse) the amount of tritium found in the whole brain only accounted for 1.5-1.8% of the injected radioactivity, regional differences in 3H accumulation already corresponded to those of 5-HT1A receptor density. Optimal data were obtained 1 h after [3H]WAY 100635 injection as the distribution of 3H in brain was exactly that of 5-HT1A receptor binding sites in mouse brain sections labelled in vitro with [3H]WAY 100635. In particular, high level of labelling was found in the lateral septum, gyrus dentatus and CA1 area of Ammon's horn in the hippocampus, dorsal raphe nucleus and entorhinal cortex. No labelling was found in he substantia nigra, and 3H accumulated in the cerebellum represented only 12-14% of that found in the hippocampus. Pretreatment with various drugs indicated that only 5-HT1A receptor ligands were able to decrease the accumulation of 3H in all the brain areas examined except in the cerebellum. Assuming that only non-specific binding took place in the latter structure, it was possible to calculate the ID50 values of 5-HT1A receptor agonists (8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin), S 14506 (1-[2-(4-fluorobenzoylamino)ethyl]-4-(7-methoxynaphthyl+ ++)piperazine) and S 20499 ((+)-4-[N-(5-methoxy-chroman-3-yl)-N-propylamino]butyl-8- azaspiro-(4,5)-decane-7,9-dione)) and antagonists (spiperone, (-)-tertatolol, (+)-WAY 100135 (N-tert-butyl-3,4-(2-methoxyphenyl)piperazin-1-yl-2-phenyl- propanamide)) as inhibitors of 3H accumulation in the hippocampus of [3H]WAY 100635-injected mice. Comparison of these values with the in vitro affinity of the same ligands for hippocampal 5-HT1A receptors revealed marked variations in the capacity of 5-HT1A receptor agonists and antagonists to reach the brain when injected via the subcutaneous route in mice.  相似文献   

10.
A variety of observations from several rodent species suggest that a serotonin (5-HT) input to the suprachiasmatic nucleus (SCN) circadian pacemaker may play a role in resetting or entrainment of circadian rhythms by non-photic stimuli such as scheduled wheel running. If 5-HT activity within the SCN is necessary for activity-induced phase shifting, then it should be possible to block or attenuate these phase shifts by reducing 5-HT release or by blocking post-synaptic 5-HT receptors. Animals received one of four serotonergic drugs and were then locked in a novel wheel for 3 h during the mid-rest phase, when novelty-induced activity produces maximal phase advance shifts. Drugs tested at several doses were metergoline (5-HT1/2 antagonist; i.p.), (+)-WAY100135 (5-HT1A postsynaptic antagonist, which may also reduce 5-HT release by an agonist effect at 5-HT1A raphe autoreceptors; i.p.), NAN-190 (5-HT1A postsynaptic antagonist, which also reduces 5-HT release via an agonist effect at 5-HT1A raphe autoreceptors; i.p.) and ritanserin (5-HT2/7 antagonist; i.p. and i.c.v.). Mean and maximal phase shifts to running in novel wheels were not significantly affected by any drug at any dose. These results do not support a hypothesis that 5-HT release or activity at 5HT1, 2 and 7 receptors in the SCN is necessary for the production of activity-induced phase shifts in hamsters.  相似文献   

11.
An impulsive cognitive style may affect behaviour in several different ways, including rapid decision making, intolerance of the delay of reward and a tendency to terminate chains of responses prematurely. It has been proposed to measure the last of these in rats using fixed consecutive number (FCN) schedules. The present study uses a modified version of the FCN procedure in which responding was paced by retracting the response lever for short periods between presses. In this way, the experimenter can control the maximum rate of responding. The procedure was made up of two components. In both, the schedule requirement was FCN 8, but in the Fast component lever presses were spaced by a minimum of 2.5 s and in the Slow component by a minimum of 5 s. Alterations in impulsivity were inferred from changes in the mean chain length and the distribution of chain lengths. The 5-HT1A agonist, 8-OH-DPAT (0.03-0.3 mg/kg), increased chain lengths within a narrow dose range, whereas the 5-HT1A antagonist, WAY 100 635 (0.03-0.3 mg/kg), reduced chain lengths. The 5-HT2 agonist, DOI (0.1-1.0 mg/kg), markedly reduced chain lengths, whereas the 5-HT2 antagonist, ritanserin (0.03-0.3 mg/kg), had no effect. The 5-HT1A/1b agonist, RU 24969 (0.03-0.3 mg/kg), reduced chain lengths. The 5-HT releaser, p-chloramphetamine (0.1-1.0 mg/kg), had a weak, biphasic effect, slightly reducing the number of short chains at the lowest dose tested and slightly increasing this number at the highest dose. Other drugs tested, citalopram (1.0-10.0 mg/kg), metergoline (0.3-3.0 mg/kg) and MDL-72222 (0.1-3.0 mg/kg), had no significant effects. These results suggest that stimulation of 5-HT1A receptors reduces impulsivity, whereas stimulation of 5-HT2 receptors increases it. These data are in agreement with previous results using the DRL-72 schedule, and indicate that there is no simple role for serotonin in the control of impulsivity.  相似文献   

12.
1. Selective 5-hydroxytryptamine (5-HT; serotonin) reuptake inhibitors (SSRIs) cause a greater increase in extracellular 5-HT in the forebrain when the somatodendritic 5-HT1A autoreceptor is blocked. Here, we investigated whether blockade of the terminal 5-HT1B autoreceptor influences a selective 5-HT reuptake inhibitor in the same way, and whether there is an additional effect of blocking both the 5-HT1A and 5-HT1B autoreceptors. 2. Extracellular 5-HT was measured in frontal cortex of the anaesthetized rat by use of brain microdialysis. In vivo extracellular recordings of 5-HT neuronal activity in the dorsal raphe nucleus (DRN) were also carried out. 3. The selective 5-HT reuptake inhibitor, paroxetine (0.8 mg kg-1, i.v.), increased extracellular 5-HT about 2 fold in rats pretreated with the 5-HT1A receptor antagonist, WAY100635. When administered alone neither paroxetine (0.8 mg kg-1, i.v.) nor WAY100635 (0.1 mg kg-1, i.v.) altered extracellular 5-HT levels. 4. Paroxetine (0.8 mg kg-1, i.v.) did not increase 5-HT in rats pretreated with the 5-HT1B/D receptor antagonist, GR127935 (1 mg kg-1, i.v.). GR127935 (1 and 5 mg kg-1, i.v.) had no effect on extracellular 5-HT when administered alone. 5. Interestingly, paroxetine (0.8 mg kg-1, i.v.) caused the greatest increase in 5-HT (up to 5 fold) when GR127935 (1 or 5 mg kg-1, i.v.) was administered in combination with WAY100635 (0.1 mg kg-1, i.v.). Administration of GR127935 (5 mg kg-1, i.v.) plus WAY100635 (0.1 mg kg-1, i.v.) without paroxetine, had no effect on extracellular 5-HT in the frontal cortex. 6. Despite the lack of effect of GR127935 on 5-HT under basal conditions, when 5-HT output was elevated about 3 fold (by adding 1 microM paroxetine to the perfusion medium), the drug caused a dose-related (1 and 5 mg kg-1, i.v.) increase in 5-HT. 7. By itself, GR127935 slightly but significantly decreased 5-HT cell firing in the DRN at higher doses (2.0-5.0 mg kg-1, i.v.), but did not prevent the inhibition of 5-HT cell firing induced by paroxetine. 8. In summary, our results suggest that selective 5-HT reuptake inhibitors may cause a large increase in 5-HT in the frontal cortex when 5-HT autoreceptors on both the somatodendrites (5-HT1A) and nerve terminals (5-HT1B) are blocked. This increase is greater than when either set of autoreceptors are blocked separately. The failure of a 5-HT1B receptor antagonist alone to enhance the effect of the selective 5-HT reuptake inhibitor in our experiments may be related to a lack of tone on the terminal 5-HT1B autoreceptor due to a continued inhibition of 5-HT cell firing. These results are discussed in relation to the use of 5-HT autoreceptor antagonists to augment the antidepressant effect of selective 5-HT reuptake inhibitors.  相似文献   

13.
Pharmacological manipulation leading to altered 5-HT function has been widely demonstrated to reduce ethanol intake in free choice tests. The aim of the present study was to examine the effects of a range of compounds known to influence 5-HT neurotransmission, including selective 5-HT receptor agonists and antagonists, on ethanol ingestion and maintained behaviour in an operant self-administration paradigm. Female Sprague-Dawley rats were trained to respond for 8% ethanol (v/v) in a 60-min test by a previously described technique. The number of responses and ethanol reinforcers (dipper deliveries), ethanol consumption (g/kg of body weight), and locomotor activity (LMA) were measured following administration of 5-HT agonists (5-HT, d-fenfluramine, fluoxetine, buspirone, TFMPP, and DOI) and antagonists (metergoline, ritanserin, and ondansetron) 30 min prior to testing. d-Fenfluramine, fluoxetine, buspirone, TFMPP, and DOI all produced a reduction in ethanol ingestion and maintained behaviour at doses that failed to reduce LMA. Conversely, metergoline and ritanserin only reduced ethanol self-administration at doses that concomitantly reduced LMA. 5-HT and ondansetron were without effect on any measure. These results demonstrate that, under the present experimental conditions, activation of central 5-HT1A, 5-HT1B, and 5-HT2 receptors reduced ethanol intake and reinforced behaviour in an operant paradigm.  相似文献   

14.
5-HT autoreceptors involved in the regulation of 5-HT release in the guinea pig dorsal raphe nucleus have been studied in comparison with those in the hypothalamus. In vitro release was measured in slices of raphe and hypothalamus prelabelled with [3H]5-HT, superfused with Krebs solution and depolarized electrically. The non-selective 5-HT receptor agonist, 5-carboxamidotryptamine (5-CT) (0.1-10 nM for raphe: 1-100 nM for hypothalamus) and antagonist, methiothepin (10-1000nM), decreased and increased, respectively, the release of [3H]5-HT evoked by electrical stimulation in either of these regions when given alone. The selective 5-HT1B/D receptor antagonist, GR127935 (100-1000 nM), and the 5-HT1D receptor antagonist, ketanserin (300-1000 nM), had no significant effect on this release in either of these regions. Methiothepin and GR127935 (100-1000 nM) shifted to the right the concentration-effect curve of 5-CT in both the raphe and the hypothalamus. At 300 nM, ketanserin shifted to the right the concentration-effect curve of 5-CT in the raphe but did not modify the 5-CT curve in the hypothalamus. In microdialysis experiments ketanserin, applied locally at 10 microM, increased the extracellular levels of 5-HT in the dorsal raphe nucleus of the freely moving guinea pig, whereas 5-HT levels were unchanged in the hypothalamus. Ketanserin at 1 microM did not affect the decrease in 5-HT output induced by the selective 5-HT1B/D receptor agonist, naratriptan (used at 10 microM in raphe and 0.1 microM in hypothalamus), in the raphe or the hypothalamus. In the raphe, WAY100635, a 5-HT1A receptor antagonist, at 1 microM, did not prevent naratriptan (10 microM) from reducing the extracellular levels of 5-HT. These results suggest that, in the conditions used in this study, the release of 5-HT in the dorsal raphe nucleus is possibly modulated in part by 5-HT1B receptors but essentially the control is through 5-HT receptors whose subtype is still to be determined. In the hypothalamus, however, it is clear that only 5-HT1B receptors are involved in the modulation of 5-HT neurotransmission.  相似文献   

15.
Ovariectomized rats were hormonally primed with 0.5 microg estradiol benzoate and 500 microg progesterone to produce two groups of rats differing in their lordosis behavior. Females with a lordosis to mount (L/M) ratio < 0.5 were used to test the hypothesis that 5-HT(2A/2C) receptor agonists could facilitate lordosis behavior. Females with L/M ratios > or = 0.5 were used to evaluate the potential suppressive effect of 5-HT(2A/2C) receptor compounds. Lordosis behavior was examined following bilateral infusion of drugs into the ventromedial nucleus of the hypothalamus (VMN). Drugs examined were the 5-HT(2A/2C) receptor agonist, (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl (DOI), the 5-HT(2A/2C) receptor antagonist, 3-[2-[4-(4-fluorobenzoyl)-1-piperdinyl]ethyl]-2,4(1H,3H)-quinazoli nedione tartrate (ketanserin tartrate), and the non-selective 5-HT receptor agents, 2-(1-piperazinyl)quinoline dimaleate (quipazine) and N-(3-trifluoromethylphenyl)piperazine HCl (TFMPP). Drugs with agonist action at 5-HT(2A/2C) receptors increased lordosis behavior in rats with low sexual receptivity. The 5-HT(2A/2C) receptor antagonist, ketanserin, inhibited lordosis behavior in sexually receptive rats. DOI attenuated the lordosis-inhibiting effect of ketanserin, but ketanserin was less effective in preventing DOI from increasing lordosis behavior. These results strengthen prior inferences that activation of 5-HT(2A/2C) receptors can facilitate lordosis behavior and that the VMN is one site at which such facilitation can occur.  相似文献   

16.
In the rat dorsal hippocampus and dorsal raphe nucleus, the microiontophoretic application of ergotamine and 5-HT suppressed the firing activity of CA3 pyramidal neurons and 5-HT neurons, an effect antagonized by selective 5-HT1A receptor antagonists. Co-application of ergotamine prevented the inhibitory action of 5-HT on the firing activity of CA3 pyramidal neurons but not of 5-HT neurons, indicating that ergotamine acted as a partial 5-HT1A receptor agonist in the dorsal hippocampus and as a full agonist at 5-HT1A autoreceptors. Ergotamine decreased, in a concentration-dependent manner, the electrically evoked release of [3H]5-HT in preloaded rat and guinea pig hypothalamus slices; this effect was prevented by the nonselective 5-HT receptor antagonist methiothepin but not by the selective 5-HT1B/1D receptor antagonist GR 127935 or the alpha 2-adrenoceptor antagonist idazoxan. Although body temperature in humans remained unchanged following inhaled ergotamine, in the rat, subcutaneously injected ergotamine produced a hypothermia that was prevented by a pretreatment with the 5-HT1A/1B receptor/beta-adrenoceptor antagonist pindolol. Finally in humans, ergotamine did not alter prolactin or adrenocorticotropic hormone levels, but increased growth hormone level, which was prevented by pindolol. Cortisol level was increased in humans by ergotamine, but this enhancement was unaltered by pindolol. In conclusion, the present results suggest that ergotamine acted in the rat brain as a 5-HT1A receptor agonist and as an agonist of terminal 5-HT autoreceptor of a yet undefined subtype. In humans, ergotamine also displayed some 5-HT1A receptor activity but, probably because of lack of receptor selectivity, it did not present the same profile as other 5-HT1A receptor agonists.  相似文献   

17.
1. The sparse population of brainstem 5-hydroxytryptamine1C (5-HT1C) (also called 5-HT2C) receptors has received little attention despite its possible role in the serotonin syndrome and 5-HT-mediated shaking behavior. We characterized [3H]mesulergine binding in rat brainstem and, to determine if brainstem 5-HT1C sites respond to serotonergic manipulations, performed saturation studies of [3H]mesulergine binding in brainstem from rats treated chronically with 11 different 5-HT1C/2 agonists and antagonists. 2. In competition studies in vitro, the rank order of drug potency was most compatible with a 5-HT1C receptor binding site: mianserin, 5-HT, cinanserin, 1-(3-chlorophenyl)piperazine (m-CPP), 1-(2-5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), MDL 100,907, RU 24969, 5-carboxamidotryptamine (5-CT), 8-OH-DPAT, MDL 72,222. 3. Chronic treatment with the agonists quipazine and trifluoromethylphenylpiperazine (TFMPP) and the antagonists ritanserin and methiothepin significantly down-regulated brainstem 5-HT1C sites, which were 65% of [3H]mesulergine-labeled sites in brainstem. Only metergoline and ritanserin significantly increased pKD. 4. Chronic treatment in vivo with DOI, m-CPP, mianserin, methysergide, spiperone, cyproheptadine, and metergoline had no significant effect on BMAX at the dose studied. 5. These data suggest similarities in the regulation of 5-HT1C and 5-HT2 sites at which both 5-HT1C 2 agonists and antagonists also induce receptor down-regulation. 6. 5-HT1C/2 agonists and antagonists that did not down-regulate brainstem 5-HT1C sites may be more active in vivo at 5-HT2 sites, at 5-HT1C sites in other brain regions, have effects on 5-HT1C receptors not detectable at the recognition site, or differ for pharmacokinetic reasons.  相似文献   

18.
We have investigated the effect of 5-HT2 receptor agonist or antagonist administration on postsynaptic 5-HT1A receptor sensitivity assessed by two behavioral measures, reciprocal forepaw treading or hypothermia induced by acute injection of the 5-HT1A receptor agonist 8-OH-DPAT. The effectiveness of these drug treatments to downregulate 5-HT2A receptors was confirmed by measuring the binding of [3H]-ketanserin in cortical homogenates, because all of these drug treatments have been shown to result in the downregulation of 5-HT2A receptor sites. Acute or chronic treatment of rats with the 5-HT2 receptor antagonist mianserin, or chronic administration of the 5-HT2A receptor antagonist ketanserin, did not alter 8-OH-DPAT-induced hypothermia or forepaw treading. These data indicate that downregulation of 5-HT2A receptors is not sufficient to alter these postsynaptic 5-HT1A receptor-mediated responses. Chronic treatment of rats with the 5-HT2 receptor agonist DOI, however, resulted in the attenuation of both 5-HT1A receptor-mediated responses measured in separate experimental groups. The apparent desensitization of 5-HT1A receptors following chronic DOI treatment was not accompanied by a change in either the number or affinity of 5-HT1A receptor sites as measured by the binding of [3H]-8-OH-DPAT in hippocampal homogenates. Chronic activation of 5-HT2 receptors may be one mechanism by which the sensitivity postsynaptic 5-HT1A receptors can be regulated.  相似文献   

19.
Using an in vivo model for evaluation of gastric sensitivity in awake rats, we aimed to determine whether 5-hydroxytryptamine 1A (5-HT1A) agonists modify pain threshold and gastric compliance specifically through 5-HT1A receptors. Isobaric gastric distensions were performed with a barostat using steps of 5 mm Hg in male rats equipped with a gastric balloon and electrodes implanted in the neck muscles. Gastric distension at 15 or 20 mm Hg induced a typical posture associated with contractions of the neck muscles. Rats received drugs 30 min before gastric distension. The 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), administered intraperitoneally (0.5 mg/kg) increased gastric pain threshold and gastric tone. These effects were reproduced when administered centrally (0.05 mg/kg) and blocked by intracerebroventricular administration of the 5-HT1A antagonist WAY 100635. Flesinoxan (4 mg/kg, intraperitoneally), another 5-HT1A agonist reproduced the effects of 8-OH-DPAT on pain threshold and gastric tone and the alpha2-receptor antagonist yohimbine did not modify the action of 8-OH-DPAT. Our results indicate that activation of 5-HT1A receptors at the level of the central nervous system increases gastric tone and decreases gastric sensitivity to distension.  相似文献   

20.
Analogues of the potent and selective 5-HT1A ligand, WAY 100635, were synthesized and examined as potential candidates for imaging 5-HT1A receptors by positron emission tomography (PET). Several of the analogues displayed nanomolar affinity for the 5-HT1A receptor, comparable to WAY 100635. Three of these were examined in a model of human liver metabolism vis-à-vis WAY 100635. All showed a markedly lower propensity for amide hydrolysis than WAY 100635. Radiolabelling of these three potential PET radiotracers with carbon-11 was readily achieved from [11C]-iodomethane, and the newly synthesized radioligands were tested in vivo in rats for binding to 5-HT1A receptors. Whereas two of the ligands failed to bind to 5-HT1A receptors in vivo, one was successful. The latter, [11C]-7 [4-(2'-methoxyphenyl)-1-[2'-[N-(2'-pyridinyl)-2-bicyclo[2.2.2]octanec arboxamido]ethyl]-piperazine], showed good brain penetration, hippocampal:cerebellar ratios of 10:1 at 45 min postinjection. Blocking studies with a variety of drugs demonstrated that the binding of [11C]-7 in vivo was selective for 5-HT1A receptors. [11C]-7 is a promising candidate as a ligand for imaging 5-HT1A receptors by PET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号