首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behaviour of Listeria monocytogenes and Staphylococcus aureus in vacuum-packed cooked ham slices treated with an electron beam and stored at 4, 7 and 10 °C was investigated. Cooked ham slices were inoculated with L. monocytogenes and S. aureus and electron beam treated at 2 and 3 kGy. After treatment, a long temperature-dependent death phase was observed, followed by growth at a slower rate than in untreated samples. Assuming a hypothetical load of 10 cells/g or cm2 of L. monocytogenes and S. aureus as an original contamination in an industrial situation, an E-beam treatment of vacuum-packed cooked ham slices at 2 kGy guarantees the microbiological safety of the product along its shelf life, even if a noticeable temperature (10 °C) abuse occur during its storage period. Likewise, the E-beam treatment gave rise to a substantial increase of the RTE cooked ham shelf life off-sensory features associated to the spoilage only were detected in non-treated samples (controls) after 8 and 18 days of storage at 10 °C and 7 °C, respectively.  相似文献   

2.
Nisin, in the form of the commercial product Nisaplin, and lacticin 3147 in whey powdered form were added to minced pork-meat in amounts of 0.15% (w/w) and 1.5% (w/w), respectively. The meat was cooked and inoculated with a Staphylococcus aureus strain of meat origin and a Listeria innocua strain at a level of 107 or 105 CFU g–1. The batches were stored vacuum-packaged for 21 days at 8 °C. Nisin and lacticin 3147 immediately reduced the L. innocua population at the time of inoculation. Nisin showed higher inhibitory activity than lacticin 3147. During the storage period, a slight L. innocua growth was observed in the batches inoculated with the larger inoculum, and a bacteriostatic effect was observed against Listeria in the batches inoculated with 105 CFU g–1. Nisin maintained a constant S. aureus population in the cooked batch inoculated with 107 CFU g–1, although the bacteriocin was capable of reducing the amount of S. aureus by 90% in the batch inoculated with 105 CFU g–1. On the other hand, lacticin 3147 did not show an inhibitory effect against S. aureus in the cooked meat. The starter culture Lactococcus lactis DPC 303-T4 (containing the conjugative plasmid encoding production of lacticin 3147) was inoculated in a portion of a Longissimus dorsi pork muscle with brine. L. lactis DPC 303-T4 performed a good fermentation, but lacticin 3147 production was not found after 7 days at 12 °C of storage.  相似文献   

3.
To investigate the applicability of UV-C irradiation on the inactivation of foodborne pathogenic bacteria in ready-to-eat sliced ham, UV-C treatment was evaluated. Irradiation dose required for 90% reduction of the populations of Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and Campylobacter jejuni were determined to be 2.48, 2.39, and 2.18 J/m2. Ready-to-eat sliced hams were inoculated with the pathogens and irradiated with UV-C light of 1000, 2000, 4000, 6000, and 8000 J/m2. Microbiological data indicated that foodborne pathogen populations significantly (p < 0.05) decreased with increasing UV-C irradiation. In particular, UV-C irradiation at 8000 J/m2 reduced the populations of L. monocytogenes, S. Typhimurium, and C. jejuni in the ham by 2.74, 2.02, and 1.72 log CFU/g. The results indicate that UV-C irradiation can be used as a microbial inactivation method for ready-to-eat sliced ham, and inactivation kinetics of the foodborne pathogens fit the Weibull model better than the first-order kinetics model.  相似文献   

4.
Anna Jofré  Narcís Grèbol 《LWT》2009,42(5):924-112
The food-borne pathogens Listeria monocytogenes, Salmonella enterica, Staphylococcus aureus, Yersinia enterocolitica and Campylobacter jejuni, and the spoilage lactic acid bacteria (LAB), Escherichia coli and the yeast Debaryomyces hansenii were inoculated on slices of cooked ham, dry cured ham and marinated beef loin. During storage at 4 °C, L. monocytogenes and LAB increased up to 3.5 log units while the other species, unable to grow under refrigeration, continued at the spiking level. The application of a 600 MPa treatment effectively inactivated most of the microorganisms, the counts of which, except for LAB that increased in cooked ham and in beef loin, progressively decreased or maintained below the detection limit during the whole storage (120 days at 4 °C).  相似文献   

5.
Lee HJ  Jung H  Choe W  Ham JS  Lee JH  Jo C 《Food microbiology》2011,28(8):1468-1471
An apparatus for generating atmospheric pressure plasma (APP) jet was used to investigate the inactivation of Listeria monocytogenes on the surface of agar plates and slices of cooked chicken breast and ham. He, N2 (both 7 L/min), and mixtures of each with O2 (0.07 L/min) were used to produce the plasma jets. After treatment for 2 min with APP jets of He, He + O2, N2, or N2 + O2, the numbers of L. monocytogenes on agar plates were reduced by 0.87, 4.19, 4.26, and 7.59 log units, respectively. Similar treatments reduced the L. monocytogenes inoculated onto sliced chicken breast and ham by 1.37 to 4.73 and 1.94 to 6.52 log units, respectively, according to the input gas used with the N2 + O2 mixture being the most effective. Most APP jets reduced the numbers of aerobic bacteria on the meat surfaces to <102 CFU/g, and the numbers remained below that level of detection after storage at 10 °C for 7 days. The results indicate that APP jets are effective for the inactivation of L. monocytogenes on sliced meats and for prolonging the shelf-life of such foods.  相似文献   

6.
This study evaluated the antilisterial activity of hops beta acids (HBA) and their impact on the quality and sensory attributes of ham. Commercially cured ham slices were inoculated with unstressed‐ and acid‐stress‐adapted (ASA)‐L. monocytogenes (2.2 to 2.5 log CFU/cm2), followed by no dipping (control), dipping in deionized (DI) water, or dipping in a 0.11% HBA solution. This was followed by vacuum or aerobic packaging and storage (7.2 °C, 35 or 20 d). Samples were taken periodically during storage to check for pH changes and analyze the microbial populations. Color measurements were obtained by dipping noninoculated ham slices in a 0.11% HBA solution, followed by vacuum packaging and storage (4.0 °C, 42 d). Sensory evaluations were performed on ham slices treated with 0.05% to 0.23% HBA solutions, followed by vacuum packaging and storage (4.0 °C, 30 d). HBA caused immediate reductions of 1.2 to 1.5 log CFU/cm2 (P < 0.05) in unstressed‐ and ASA‐L. monocytogenes populations on ham slices. During storage, the unstressed‐L. monocytogenes populations on HBA‐treated samples were 0.5 to 2.0 log CFU/cm2 lower (P < 0.05) than control samples and those dipped in DI water. The lag‐phase of the unstressed‐L. monocytogenes population was extended from 3.396 to 7.125 d (control) to 7.194 to 10.920 d in the HBA‐treated samples. However, the ASA‐L. monocytogenes population showed resistance to HBA because they had a higher growth rate than control samples and had similar growth variables to DI water‐treated samples during storage. Dipping in HBA solution did not adversely affect the color or sensory attributes of the ham slices stored in vacuum packages. These results are useful for helping ready‐to‐eat meat processors develop operational procedures for applying HBA on ham slices.  相似文献   

7.
Potential effects of the fat content of frankfurters on the gastrointestinal survival of Listeria monocytogenes were investigated. At various stages of storage (7 °C, up to 55 days), inoculated frankfurters of low (4.5%) and high (32.5%) fat content were exposed to a dynamic gastrointestinal model (37 °C) and L. monocytogenes counts were determined at intervals during exposure in each gastrointestinal compartment (gastric, GC; intestinal, IC). Bacterial survival curves in each compartment were fitted with the Baranyi and Roberts mathematical model. L. monocytogenes populations on low- and high-fat frankfurters exceeded 8.0 log CFU/g at 39 and 55 days of storage, respectively. Major declines in populations occurred after 60 min on low-fat frankfurters in the GC, with reductions of 2.6 to >7.2 log CFU/g at 120 min on days 1 and 39 of storage, respectively. L. monocytogenes reductions in high-fat frankfurters ranged from 1.6 (day-1) to 5.2 (day-55) log CFU/g. Gastric inactivation rates were 0.080–0.194 and 0.030–0.097 log CFU/g/min for low- and high-fat samples, respectively. Since gastric emptying began while the gastric pH was >5, initial counts (enumerated 30 min after ingestion) reaching the IC depended on initial contamination levels on each product, which increased during storage. Subsequent reductions during the intestinal challenge were 0.1–1.4 log CFU/g. Findings indicated protective effects of fat against gastric destruction of L. monocytogenes. However, since the effects of fat were observed mainly at later stages of gastric exposure, they did not influence numbers of viable cells reaching the IC.  相似文献   

8.
The objective of this study was to evaluate the efficacy of atmospheric pressure plasma (APP), which is capable of operating at atmospheric pressure in air, in sliced cheese and ham inoculated by 3-strain cocktail of Listeria monocytogenes (ATCC 19114, 19115, and 19111, LMC). The process parameters considered were input power (75, 100, 125, and 150 W) and plasma exposure time (60, 90, and 120 s). Microbial log reduction increased with increases of input power and plasma exposure time. After 120 s APP treatments at 75, 100, and 125 W, the viable cells of LMC were reduced by 1.70, 2.78, and 5.82 log in sliced cheese, respectively. More than 8 log reductions can be achieved in 120 s at 150 W. In contrast, reductions after 120 s ranged from 0.25 to 1.73 log CFU/g in sliced ham. Calculated D values, the exposure time required to inactivate 90% of a population, from the survival curves of 75, 100, 125, and 150 W of APP treatments were 71.43, 62.50, 19.65, and 17.27 s for LMC in sliced cheese, respectively, and those in sliced ham were 476.19, 87.72, 70.92, and 63.69 s. No viable cells were detected at 125 and 150 W of APP treatment in sliced cheese, irrespective of plasma exposure time, after 1 week at a detection limit of 101 CFU/g. These results indicate that the inactivation effects of APP on L. monocytogenes are strongly dependent on the type of food.  相似文献   

9.
Little information is available regarding the fate of Listeria monocytogenes during freezing, thawing and home storage of frankfurters even though recent surveys show that consumers regularly store unopened packages in home freezers. This study examined the effects of antimicrobials, refrigerated storage, freezing, thawing method, and post-thawing storage (7 °C) on L. monocytogenes on frankfurters. Inoculated (2.1 log CFU/cm2) frankfurters formulated without (control) or with antimicrobials (1.5% potassium lactate plus 0.1% sodium diacetate) were vacuum-packaged, stored at 4 °C for 6 or 30 d and then frozen (−15 °C) for 10, 30, or 50 d. Packages were thawed under refrigeration (7 °C, 24 h), on a countertop (23 ± 2 °C, 8 h), or in a microwave oven (2450 MHz, 1100 watts, 220 s followed by 120 s holding), and then stored aerobically (7 °C) for 14 d. Bacterial populations were enumerated on PALCAM agar and tryptic soy agar plus 0.6% yeast extract. Antimicrobials completely inhibited (p < 0.05) growth of L. monocytogenes at 4 °C for 30 d under vacuum-packaged conditions, and during post-thawing aerobic storage at 7 °C for 14 d. Different intervals between inoculation and freezing (6 or 30 d) resulted in different pathogen levels on control frankfurters (2.1 or 3.9 log CFU/cm2, respectively), while freezing reduced counts by <1.0 log CFU/cm2. Thawing treatments had little effect on L. monocytogenes populations (<0.5 log CFU/cm2), and post-thawing fate of L. monocytogenes was not influenced by freezing or by thawing method. Pathogen counts on control samples increased by 1.5 log CFU/cm2 at d-7 of aerobic storage, and reached 5.6 log CFU/cm2 at d-14. As indicated by these results, consumers should freeze frankfurters immediately after purchase, and discard frankfurters formulated without antimicrobials within 3 d of thawing and/or opening.  相似文献   

10.
The fate of Listeria monocytogenes, Salmonella typhimurium, or Escherichia coli O157:H7 were separately monitored both in and on soudjouk. Fermentation and drying alone reduced numbers of L. monocytogenes by 0.07 and 0.74 log10 CFU/g for sausages fermented to pH 5.3 and 4.8, respectively, whereas numbers of S. typhimurium and E. coli O157:H7 were reduced by 1.52 and 3.51 log10 CFU/g and 0.03 and 1.11 log10 CFU/g, respectively. When sausages fermented to pH 5.3 or 4.8 were stored at 4, 10, or 21 °C, numbers of L. monocytogenes, S. typhimurium, and E. coli O157:H7 decreased by an additional 0.08–1.80, 0.88–3.74, and 0.68–3.17 log10 CFU/g, respectively, within 30 days. Storage for 90 days of commercially manufactured soudjouk that was sliced and then surface inoculated with L. monocytogenes, S. typhimurium, and E. coli O157:H7 generated average D-values of ca. 10.1, 7.6, and 5.9 days at 4 °C; 6.4, 4.3, and 2.9 days at 10 °C; 1.4, 0.9, and 1.6 days at 21 °C; and 0.9, 1.4, and 0.25 days at 30 °C. Overall, fermentation to pH 4.8 and storage at 21 °C was the most effective treatment for reducing numbers of L. monocytogenes (2.54 log10 CFU/g reduction), S. typhimurium (5.23 log10 CFU/g reduction), and E. coli O157:H7 (3.48 log10 CFU/g reduction). In summary, soudjouk-style sausage does not provide a favorable environment for outgrowth/survival of these three pathogens.  相似文献   

11.
Enterocins A and B and sakacin K at 200 and 2,000 activity units (AU)/cm2, nisin at 200 AU/cm2, 1.8% potassium lactate, and a combination of 200 AU/cm2 of nisin and 1.8% lactate were incorporated into interleavers, and their effectiveness against Listeria monocytogenes spiked in sliced, cooked ham was evaluated. Antimicrobial-packaged cooked ham was then subjected to high-pressure processing (HPP) at 400 MPa. In nonpressurized samples, nisin plus lactate-containing interleavers were the most effective, inhibiting L. monocytogenes growth for 30 days at 6 degrees C, with counts that were 1.9 log CFU/g lower than in the control after 3 months. In the other antimicrobial-containing interleavers, L. monocytogenes did not exhibit a lag phase and progressively grew to levels of about 8 log CFU/g. HPP of actively packaged ham slices reduced Listeria populations about 4 log CFU/g in all batches containing bacteriocins (i.e., nisin, sakacin, and enterocins). At the end of storage, L. monocytogenes levels in the bacteriocin-containing batches were the lowest, with counts below 1.51 log CFU/g. In contrast, HPP moderately reduced L. monocytogenes counts in the control and lactate batches, with populations gradually increasing to about 6.5 log CFU/g at the end of storage.  相似文献   

12.
Illnesses from Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella have been associated with the consumption of numerous produce items. Little is known about the effect of consumer handling practices on the fate of these pathogens on celery. The objective of this study was to determine pathogen behavior at different temperatures under different storage conditions. Commercial fresh-cut celery was inoculated at ca. 3 log CFU/g onto either freshly cut or outer uncut surfaces and stored in either sealed polyethylene bags or closed containers. Samples were enumerated following storage for 0, 1, 3, 5, and 7 days when held at 4 °C or 12 °C, and after 0, 8, and 17 h, and 1, and 2 days when held at 22 °C. At 4 °C, all populations declined by 0.5–1.0 log CFU/g over 7 days. At 12 °C, E. coli O157:H7 and Salmonella populations did not change, while L. monocytogenes populations increased by ca. 0.5 log CFU/g over 7 days. At 22 °C, E. coli O157:H7, Salmonella, and L. monocytogenes populations increased by ca. 1, 2, or 0.3 log CFU/g, respectively, with the majority of growth occurring during the first 17 h. On occasion, populations on cut surfaces were significantly higher than those on uncut surfaces. Results indicate that populations are reduced under refrigeration, but survive and may grow at elevated temperatures.  相似文献   

13.
NaCl is an important multifunctional ingredient applied in dry-cured ham elaboration. However, its excessive intake has been linked to serious cardiovascular diseases causing a recent increase in the development of reduced salt products. In the present study Listeria monocytogenes and Salmonella, food-borne pathogens which can cross-contaminate post processed products, were spiked with < 100 CFU/g on slices of both standard (S) and NaCl-free processed (F) (elaborated with KCl + potassium lactate instead of NaCl) smoked dry-cured ham. Although L. monocytogenes and Salmonella counts decreased faster in S ham, pathogens were present in both types of non-pressure treated ham during the entire refrigerated storage period (112 days). Pressurisation at 600 MPa for 5 min caused the elimination of both pathogens in S ham after 14 days. In contrast, Salmonella and L. monocytogenes were present in F ham until days 28 and 56, respectively, indicating that the NaCl-free processed dry-cured ham had lower stability than standard smoked dry-cured ham.  相似文献   

14.
The behaviour of spoilage and pathogenic microorganisms was evaluated after high-pressure treatment (600 MPa 6 min, 31 °C) and during chilled storage at 4 °C for up to 120 days of commercial meat products. The objective was to determine if this pressure treatment is a valid process to reduce the safety risks associated with Salmonella and Listeria monocytogenes, and if it effectively avoids or delays the growth of spoilage microorganisms during the chilled storage time evaluated. The meat products covered by this study were cooked meat products (sliced cooked ham, pH 6.25, aw 0.978), dry cured meat products (sliced dry cured ham, pH 5.81, aw 0.890), and raw marinated meats (sliced marinated beef loin, pH 5.88, aw 0.985). HPP at 600 MPa for 6 min was an efficient method for avoiding the growth of yeasts and Enterobacteriaceae with a potential to produce off-flavours and for delaying the growth of lactic acid bacteria as spoilage microorganisms. HPP reduced the safety risks associated with Salmonella and L. monocytogenes in sliced marinated beef loin.  相似文献   

15.
This study examined the growth characteristics of Listeria monocytogenes as affected by a native microflora in cooked ham at refrigerated and abuse temperatures. A five-strain mixture of L. monocytogenes and a native microflora, consisting of Brochothrix spp., isolated from cooked meat were inoculated alone (monocultured) or co-inoculated (co-cultured) onto cooked ham slices. The growth characteristics, lag phase duration (LPD, h), growth rate (GR, log10 cfu/h), and maximum population density (MPD, log10 cfu/g), of L. monocytogenes and the native microflora in vacuum-packed ham slices stored at 4, 6, 8, 10, and 12 °C for up to 5 weeks were determined. At 4-12 °C, the LPDs of co-cultured L. monocytogenes were not significantly different from those of monocultured L. monocytogenes in ham, indicating the LPDs of L. monocytogenes at 4-12 °C were not influenced by the presence of the native microflora. At 4-8 °C, the GRs of co-cultured L. monocytogenes (0.0114-0.0130 log10 cfu/h) were statistically but marginally lower than those of monocultured L. monocytogenes (0.0132-0.0145 log10 cfu/h), indicating the GRs of L. monocytogenes at 4-8 °C were reduced by the presence of the native microflora. The GRs of L. monocytogenes were reduced by 8-7% with the presence of the native microflora at 4-8 °C, whereas there was less influence of the native microflora on the GRs of L. monocytogenes at 10 and 12 °C. The MPDs of L. monocytogenes at 4-8 °C were also reduced by the presence of the native microflora. Data from this study provide additional information regarding the growth suppression of L. monocytogenes by the native microflora for assessing the survival and growth of L. monocytogenes in ready-to-eat meat products.  相似文献   

16.
The effects of different concentrations of Zataria multiflora Boiss. essential oil (EO: 0, 5, 15 and 30 μl 100 ml−1) and nisin (N: 0, 0.25 and 0.5 μg ml−1), temperatures (T: 25 and 8 °C), and storage times (up to 21 days) on growth of Salmonella typhimurium and Staphylococcus aureus in a commercial barley soup were evaluated in a factorial design study. The growth of S. typhimurium was significantly (P < 0.05) decreased by EO concentrations and their combinations with N concentrations at 8 °C. For S. aureus, the viable count was significantly (P < 0.05) inhibited by EO and N concentrations and their combinations, incubated at both storage temperatures. The mechanism of the antimicrobial action of EO, N, and their combinations against cell membranes of the tested organisms were also studied by measurement of the release of cell constituents and by the electronic microscopy observations of the cells. The significant increase of the cell constituents’ release of both organisms was observed as a result of treatments with EO and EO in combination with N. Electronic microscopy observations revealed that the cell membranes of S. typhimurium treated by EO and EO in combination with N were significantly damaged, while cells treated with only N looked similar to untreated cells. The electron micrographs of treated cells of S. aureus with EO, N, and their combination also showed important morphological damages and disrupted membranes.  相似文献   

17.
The effect of Lactococcus lactis nisin‐producing strains, isolated from Italian fermented foods, on the survival of two foodborne pathogens namely Listeria monocytogenes and Staphylococcus aureus was investigated in experimental cheese production. One of the three Lactobacillus lactis nisin innoculated as starters, Lactobacillus lactis 41FL1 lowered S. aureus count by 1.73 log colony‐forming units (cfu)/g within the first 3 days, reaching the highest reduction, 3.54 log cfu/g, by the end of ripening period of 60 days. There was no effect on L. monocytogenes. The application of L. lactis 41FL1 as bioprotective culture in controlling S. aureus shows considerable promise.  相似文献   

18.
Hu P  Xu XL  Zhou GH  Han YQ  Xu BC  Liu JC 《Meat science》2008,80(2):462-469
The effectiveness of Lactobacillus sakei B-2 inoculated as a protective culture on the inhibition of spoilage bacteria on sliced vacuum packed cooked ham was investigated by using culture-dependent and -independent approaches. Total microbial DNA was directly extracted from both control and treatment samples, and subjected to a nested PCR protocol, PCR–DGGE analysis was used to identify and monitor the dynamic changes in the microbial population, followed by partial 16S rDNA sequencing. The DGGE profile demonstrated that the protective culture effectively suppressed growth of predominant spoilage bacteria L. sakei, Lactobacillus curvatus and Leuconostoc mesenteroides in cooked ham during storage at 4 °C, however, growth of uncultured Leuconostoc was not inhibited. The shelf-life of this product inoculated with L. sakei B-2, at levels of 5.91 ± 0.04 log10 CFU g−1 was 35 days, compared to 15 days of control samples, when the ham was stored at 4 °C.  相似文献   

19.
The fate of Listeria monocytogenes, Salmonella Typhimurium, or Escherichia coli O157:H7 were separately monitored both in and on teewurst, a traditional raw and spreadable sausage of Germanic origin. Multi-strain cocktails of each pathogen (ca. 5.0 log CFU/g) were used to separately inoculate teewurst that was subsequently stored at 1.5, 4, 10, and 21 °C. When inoculated into commercially-prepared batter just prior to stuffing, in general, the higher the storage temperature, the greater the lethality. Depending on the storage temperature, pathogen levels in the batter decreased by 2.3 to 3.4, ca. 3.8, and 2.2 to 3.6 log CFU/g for E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, during storage for 30 days. When inoculated onto both the top and bottom faces of sliced commercially-prepared finished product, the results for all four temperatures showed a decrease of 0.9 to 1.4, 1.4 to 1.8, and 2.2 to 3.0 log CFU/g for E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, over the course of 21 days. With the possible exceptions for salt and carbohydrate levels, chemical analyses of teewurst purchased from five commercial manufacturers revealed only subtle differences in proximate composition for this product type. Our data establish that teewurst does not provide a favourable environment for the survival of E. coli O157:H7, S. Typhimurium, or L. monocytogenes inoculated either into or onto the product.  相似文献   

20.
Pulsed light (PL) was tested for its utility to improve the microbial quality and safety of ready-to-eat cooked meat products. Vacuum-packaged ham and bologna slices were superficially inoculated with Listeria monocytogenes and treated with 0.7, 2.1, 4.2 and 8.4 J/cm2. PL treatment at 8.4 J/cm2 reduced L. monocytogenes by 1.78 cfu/cm2 in cooked ham and by 1.11 cfu/cm2 in bologna. The effect of PL on lipid oxidation and sensory properties was also investigated. The 2-thiobarbituric acid values were very low and chromaticity parameters were within the normal values reported for cooked meat products. PL at 8.4 J/cm2 did not affect the sensory quality of cooked ham, while treatments above 2.1 J/cm2 negatively influenced the sensory properties of bologna. The combination of PL and vacuum packaging provided ham with an additional shelf-life extension of 30 days compared with only vacuum packaging. The shelf-life of bologna was not extended by PL.

Industrial relevance

The efficacy of pulsed light for the decontamination of surfaces offers excellent possibilities to ensure food safety and to extend shelf-life of ready-to-eat (RTE) products. The results of this study indicate that Listeria monocytogenes can be reduced by approximately 2 log cfu/cm2 in RTE cooked ham and 1 log cfu/cm2 in bologna using a fluence of 8.4 J/cm2. This dose does not affect the sensory properties of ham and triples its shelf-life when compared with conventional RTE products. On the contrary, fluences above 2.1 J/cm2 are not suitable for the treatment of bologna since sensory quality is modified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号