首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new monomer, 3,6‐endo‐methylene‐1,2,3,6‐tetrahydrophthalimidobutanoyl‐5‐fluorouracil (ETBFU), was synthesized by reaction of 3,6‐endo‐methylene‐1,2,3,6‐tetrahydrophthalimidobutanoyl chloride and 5‐fluorouracil. The homopolymer of ETBFU and its copolymers with acrylic acid (AA) or vinyl acetate (VAc) were prepared by photopolymerization using 2,2‐dimethoxy‐2‐phenylacetophenone as an initiator at 25 °C. The synthesized ETBFU and its polymers were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The ETBFU content in poly(ETBFU‐co‐AA) and poly(ETBFU‐co‐VAc) was 43 and 14 mol%, respectively. The apparent number‐average molecular weight (Mn) of the polymers determined by GPC ranged from 8400 to 11 300. The in vitro cytotoxicity of the samples against mouse mammary carcinoma (FM3A), mouse leukaemia (P388), and human histiocytic lymphoma (U937) cancer cell lines decreased in the order 5‐FU ≥ ETBFU > poly(ETBFU) > poly(ETBFU‐co‐AA) > poly(ETBFU‐co‐VAc). The in vivo antitumour activity of the polymers against Balb/C mice bearing sarcoma 180 tumour cells was greater than that of 5‐fluorouracil at all doses tested. © 2000 Society of Chemical Industry  相似文献   

2.
A new monomer, exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidocaproic acid (ETCA), was prepared by reaction of maleimidocaproic acid and furan. The homopolymer of ETCA and its copolymers with acrylic acid (AA) or with vinyl acetate (VAc) were obtained by photopolymerizations using 2,2‐dimethoxy‐2‐phenylacetophenone as an initiator at 25 °C. The synthesized ETCA and its polymers were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The apparent average molecular weights and polydispersity indices determined by gel permeation chromatography (GPC) were as follows: Mn = 9600 g mol?1, Mw = 9800 g mol?1, Mw/Mn = 1.1 for poly(ETCA); Mn = 14 300 g mol?1, Mw = 16 200 g mol?1, Mw/Mn = 1.2 for poly(ETCA‐co‐AA); Mn = 17 900 g mol?1, Mw = 18 300 g mol?1, Mw/Mn = 1.1 for poly(ETCA‐co‐VAc). The in vitro cytotoxicity of the synthesized compounds against mouse mammary carcinoma and human histiocytic lymphoma cancer cell lines decreased in the following order: 5‐fluorouracil (5‐FU) ≥ ETCA > polymers. The in vivo antitumour activity of the polymers against Balb/C mice bearing sarcoma 180 tumour cells was greater than that of 5‐FU at all doses tested. © 2001 Society of Chemical Industry  相似文献   

3.
Attachment of anticancer agents to polymers has been demonstrated to improve their therapeutic profiles. A new monomer containing camptothecin, 5‐norbonene‐endo‐2,3‐dicarboxylimidoundecanoyl‐camptothecin (NDUCPT) and its homopolymer and copolymer with acrylic acid (AA) were synthesized and spectroscopically characterized. The NDUCPT content in poly(NDUCPT‐co‐AA) obtained by elemental analysis was 51%. The average molecular weights of the polymers determined by gel permeation chromatography were as follows: Mn = 12 100, Mw = 23 400 g mol?1, Mw/Mn = 1.93 for poly(NDUCPT), Mn = 15 400, Mw = 28 300 g mol?1, Mw/Mn = 1.83 for poly(NDUCPT‐co‐AA). The IC50 value of NDUCPT and its polymers against U937 cancer cells was larger than that of CPT. The in vivo antitumour activity of all polymers in Balb/C mice bearing the sarcoma 180 tumour cell line was greater than that of CPT at a dose of 100 mg kg?1. Copyright © 2003 Society of Chemical Industry  相似文献   

4.
A new monomer, vinyl‐(5‐fluorouracil)‐ethanoate (VFUE), was synthesized by reaction of 5‐fluorouracil (5‐FU) and vinyl iodoacetate. The homopolymer of VFUE and its copolymers with acrylic acid (A, A) and maleic anhydride (MAH) were prepared by photopolymerization. The synthesized VFUE and polymers were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The contents of VFUE unit in poly(VFUE‐co‐AA) and poly(VFUE‐co‐MAH) were 21 mol% and 16 mol%, respectively. The number average molecular weights of the polymers determined by gel permeation chromatography were in the range 9600–17900 g mol?1. The in vitro cytotoxicities of the samples against a normal cell line decreased as follows: 5‐FU > VFUE > poly(VFUE) > poly(VFUE‐co‐AA) > poly(VFUE‐co‐MAH). The in vivo antitumour activities of the polymers against Balb/C mice bearing the sarcoma 180 tumour cells were greater than those of 5‐FU at all concentrations. The inhibition of simian virus 40 DNA replication by the samples was much greater than that of the control. © 2002 Society of Chemical Industry  相似文献   

5.
A new monomer, methacryloyl‐2‐oxy‐1,2,3‐propane tricarboxylic acid (MTCA), was synthesized from citric acid and methacrylic anhydride. Poly(methacryloyl‐2‐oxy‐1,2,3‐propane tricarboxylic acid) and poly(methacryloyl‐2‐oxy‐1,2,3‐propane tricarboxylic acid)‐co‐(maleic anhydride) were prepared by radical polymerizations. Terpoly(methacryloyl‐2‐oxy‐1,2,3‐propane tricarboxylic acid–maleic anhydride–furan) was obtained by in situ terpolymerization of MTCA and exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalic anhydride. The synthesized samples were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The number‐average molecular weights of the fractionated polymers determined by GPC were in the range 14 900–16 600 and polydispersity indices were less than 1.14. The in vitro IC50 values of the monomer and polymers against cancer and normal cell lines were much higher than those of 5‐fluorouracil (5‐FU). The in vivo antitumour activities of the synthesized samples at a dosage of 0.8 mg kg−1 against mice bearing the sarcoma 180 tumour cell line decreased in the order terpoly(MTCA‐MAH‐FUR) > poly(MTCA‐co‐MAH) > poly(MTCA) > MTCA > 5‐FU. The synthesized samples inhibited DNA replication and angiogenetic activity more than did 5‐FU. © 2001 Society of Chemical Industry  相似文献   

6.
The biomedical applications of poly(ε‐caprolactone) (PCL) were limited for its high hydrophobicity and crystallinity. In this study, we copolymerized CL with amorphous 5‐hydroxyl‐trimethylene carbonate (HTMC) to solve the problem. The 5‐benzyloxy‐trimethylene carbonate (BTMC) was synthesized to copolymerize with CL, then hydrogenolyzed to obtain hydroxyl pendant groups. A serial of copolymers with different BTMC molar ratio were synthesized and their chemical structures and thermal properties were thoroughly studied with NMR, FT‐IR, GPC, XRD, DSC, and TGA. Finally we examined the water contact angle of the copolymers. DSC and XRD results showed that the PCL segments in the copolymers crystallized below 16.8%. BTMC molar content and the crystallinity of the copolymers increased after hydrolysis. With the introduced hydroxyl pendant groups, the deprotected copolymers improved their hydrophilic property significantly, and the copolymer with 9.3% HTMC molar content had static water contact angle as low as 36.5°. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Poly(vinyl alcohol) was modified by UV radiation with dimethyl amino ethyl methacrylate (DMAEMA) monomer to get poly(dimethyl amino ethyl methacrylate) modified poly(vinyl alcohol) (PVADMAEMA) membrane. The PVADMAEMA membranes were characterized by Fourier transform infrared spectroscopy. The tensile strength and elongation of PVADMAEMA membranes were measured by Universal Testing Machine. The results of X‐ray diffraction (XRD) and differential scanning calorimetry (DSC) showed that (1) the crystalline area in PVADMAEMA decreased with increasing the content of poly(dimethyl amino ethyl methacrylate) in the membrane. (2) Only one glass transition temperature (Tg) was found for the various PVADMAEMA membranes. It means that poly(dimethyl amino ethyl methacrylate) and PVA are compatible in PVADMAEMA membrane. (3)The Tg of the membrane is reduced with increasing the content of poly(dimethyl amino ethyl methacrylate) in the membrane. The water content on the PVADMAEMA membranes was determined. It was found that the water content on the PVADMAEMA membrane increased with increasing the content of poly(dimethyl amino ethyl methacrylate). The changes of properties enhanced the permeability of 5‐Fluorouracil (5‐Fu) through the PVADMAEMA membranes. A linear relationship between the permeability and the weight percent of poly(dimethyl amino ethyl methacrylate) in the PVADMAEMA membrane is found. It is expressed as P (cm/s) = (9.6 ± 0.4) × 10?5 + (8.8 ± 0.6) × 10?5 W x , where P is the permeability of 5‐Fu through the membrane and Wx is the weight percent of poly(dimethyl amino ethyl methacrylate) in the PVADMAEMA membrane. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Photocopolymerizations of 3,5-dioxo-4,10-dioxatricyclo[5.2.02,6]dec-8-ene (DDTD) with methacrylic acid (MA) acrylamide (AAm) and vinyl pyrrolidone (VP) were carried out in 2-butanone using dimethoxy benzoin (DMB) as an initiator at 25°C. The structures of the polymers obtained from photopolymerizations of corresponding monomer pairs were confirmed to be poly(DDTD-co-MA), poly(DDTD-co-AAm) and poly(DDTD-co-VP) by 1H NMR and 13C NMR spectroscopies, and the average molecular weights were determined by gel permeation chromatography (GPC). The weight average molecular weights (Mw) of the polymers were in the range 9500–17300. The polymers were soluble in water, dimethyl sulphoxide (DMSO) and dimethyl formamide (DMF). The contents of DDTD units in the copolymers were 19, 37 and 45%. The in vitro cytotoxicities of the polymers were evaluated using mouse mammary carcinoma (FM-3A), mouse leukaemia (P-388) and human histiocytic lymphoma (U-937) cell lines. The in vivo antitumour activities of the polymers were estimated by the survival time of sarcoma 180 tumour-bearing mice. The in vivo antitumour activities of the polymers were greater than those of 5-fluorouracil (5-FU) and monomeric DDTD at a dose of 0·8mgkg-1. Poly(DDTD-co-AAm) and poly(DDTD-co-VP) showed higher antitumour activity than 5-FU and monomeric DDTD at all doses tested. © 1998 SCI.  相似文献   

9.
5‐Fluorouracil (5‐Fu) loaded poly(glycolide‐co‐lactide‐co‐caprolactone) (PGLC) nanoparticles were prepared by modified spontaneous emulsification solvent diffusion method (modified‐SESD method) and characterized by dynamic light scattering, scanning electron microscopy and 1H NMR determination. It was found that the obtained nanoparticles showed near spherical shape and was controllable with the radius range of 30–100 nm. Compared with the nanoparticles prepared by polylactide and poly (lactide‐co‐glycolide) (PLGA) under the similar preparation condition, yield of PGLC nanoparticles was the highest, which reached to about 100%. On the other hand, drug entrapment efficiency of PGLC nanoparticles was also higher than that of PLGA and PLLA nanoparticles. 5‐Fu release behavior of PGLC nanoparticles in vitro showed that 5‐Fu release of PGLC nanoparticles showed a near zero‐order release profile, and 5‐Fu release rate of PGLC nanoparticles was faster than that of PLLA and PLGA nanoparticles. According to degradation behavior of PGLC nanoparticles, it could be proposed that the kinetic of degradation controlled release played an important role in the release process of PGLC nanoparticles. It revealed that the PGLC nanoparticles could be a promising drug carrier. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

10.
A series of novel copolymers, poly(methacryloyl‐2‐oxy‐1,2,3‐propanetricarboxylic acid‐coexo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalic acid) [poly(MTCA‐co‐ETAc)], poly(methacryloyl‐2‐oxy‐1,2,3‐propanetricarboxylic acid‐co‐hydrogenethyl‐exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalate) [poly(MTCA‐co‐HEET)], and poly(methacryloyl‐2‐oxy‐1,2,3‐propanetricarboxylic acid‐co‐α‐ethoxy‐exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthaloyl‐5‐fluorouracil) [poly(MTCA‐co‐EETFU)], were prepared from corresponding monomers by photopolymerizations at 25°C for 48 h. The polymers were identified by FTIR, 1H‐NMR, and 13C‐NMR spectroscopies. The number‐average molecular weights of the fractionated polymers determined by GPC were in the range from 9400 to 14,900 and polydispersity indices were 1.2–1.4. The in vitro IC50 values of polymers against mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) as cancer cell lines and mouse liver cells (AC2F) as a normal cell line were much higher compared to that of 5‐fluorouracil (5‐FU). The in vivo antitumor activities of monomers and polymers against mice bearing sarcoma 180 tumor cell line were better than those of 5‐FU. The inhibition of DNA replication and antiangiogenesis activities of MTCA and copolymers were better compared to those of 5‐FU. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 57–64, 2004  相似文献   

11.
The objective of this study was to prepare high molecular weight poly(ester‐anhydride)s by melt polycondensation. The polymerization procedure consisted of the preparation of carboxylic acid terminated poly(?‐caprolactone) prepolymers that were melt polymerized to poly(?‐caprolactone)s containing anhydride functions along the polymer backbone. Poly(?‐caprolactone) prepolymers were prepared using either 1,4‐butanediol or 4‐(hydroxymethyl)benzoic acid as initiators, yielding hydroxyl‐terminated intermediates that were then converted to carboxylic acid‐terminated prepolymers by reaction with succinic anhydride. Prepolymers were then allowed to react with an excess of acetic anhydride, followed by subsequent polycondensation to resulting high molecular weight poly(ester‐anhydride)s. Upon coupling of prepolymers, size exclusion chromatography analyses showed an increase from 3600 to 70,000 g/mol in number‐average molecular weight (Mn) for the 1,4‐butanediol initiated polymer, and an increase from 7200 to 68,000 g/mol for the 4‐(hydroxymethyl)benzoic acid‐initiated polymer. 4‐Hydroxybenzoic acid and adipic acid were also used as initiators in the preparation of poly(?‐caprolactone) prepolymers. However, with these initiators, the results were not satisfactory. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 176–185, 2001  相似文献   

12.
The new monomer, 5′-O-methacryloyl-3′-azido-3′-deoxythymidine (MAZT), was synthesized by the reaction of methacryloyl chloride and 3′-azido-3′-deoxythymidine (AZT). Poly(MAZT) and copolymers of MAZT with vinyl acetate (VAc) and maleic anhydride (MAH) were synthesized by radical polymerizations. The synthesized MAZT and polymers were identified by 1H nuclear magnetic resonance (NMR), 13C NMR, elemental analysis and gel permeation chromatography. The quantities of MAZT units in poly(MAZT-co-VAc) and poly(MAZT-co-MAH) were 45 and 27 mol%, respectively. The weight average molecular weights of the polymers synthesized were in the range from 8800 to 17600. The in vitro cytotoxicities of samples against K562 human leukaemia cell line at 100 μg ml-1 decreased in the following order: poly(MAZT-co-MAH) > poly(MAZT-co-VAc) > poly(MAZT) > MAZT > AZT. The in vivo anti-tumour activities of the polymers synthesized against Balb/C mice bearing sarcoma 180 tumour cells were greater than those of 5-fluorouracil at all concentrations.  相似文献   

13.
Blended films of poly(L ‐lactide) [ie poly(L ‐lactic acid)] (PLLA) and poly(?‐caprolactone) (PCL) without or mixed with 10 wt% poly(L ‐lactide‐co‐?‐caprolactone) (PLLA‐CL) were prepared by solution‐casting. The effects of PLLA‐CL on the morphology, phase structure, crystallization, and mechanical properties of films have been investigated using polarization optical microscopy, scanning electron microscopy, differential scanning calorimetry and tensile testing. Addition of PLLA‐CL decreased number densities of spherulites in PLLA and PCL films, and improved the observability of spherulites and the smoothness of cross‐section of the PLLA/PCL blend film. The melting temperatures (Tm) of PLLA and PCL in the films remained unchanged upon addition of PLLA‐CL, while the crystallinities of PLLA and PCL increased at PLLA contents [XPLLA = weight of PLLA/(weight of PLLA and PCL)] of 0.4–0.7 and at most of the XPLLA values, respectively. The addition of PLLA‐CL improved the tensile strength and the Young modulus of the films at XPLLA of 0.5–0.8 and of 0–0.1 and 0.5–0.8, respectively, and the elongation at break of the films at all the XPLLA values. These findings strongly suggest that PLLA‐CL was miscible with PLLA and PCL, and that the dissolved PLLA‐CL in PLLA‐rich and PCL‐rich phases increased the compatibility between these two phases. © 2003 Society of Chemical Industry  相似文献   

14.
A series of novel ABA‐type block copolymers were synthesized by polymerization of trans‐4‐hydroxy‐L ‐proline (HyP) in the presence of various molecular weight poly(ethylene glycol)s (PEGs), a bifunctional OH‐terminated PEG using stannous octoate as catalyst. The optimal reaction conditions for the synthesis of the copolymers were obtained with 5 wt % stannous octoate at 140°C under vacuum (20 mmHg) for 24 h. The synthesized copolymers were characterized by IR spectroohotometry, proton nuclear magnetic resonance, differential scanning calorimetry, and Ubbelohde viscometer. The glass transition temperature (Tg) of the copolymers shifted to significantly higher temperature with increasing the number average degree of polymerization and HyP/PEO molar ratio. In contrast, the melting temperature (Tm) decreased with increasing the HyP/PEO molar ratio. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1581–1587, 2001  相似文献   

15.
Poly(ε‐caprolactone)/poly(ε‐caprolactone‐co‐lactide) (PCL/PLCL) blend filaments with various ratios of PCL and PLCL were prepared by melt spinning. The effect of PLCL content on the physical properties of the blended filament was investigated. The melt spinning of the blend was carried out and the as spun filament was subsequently subjected to drawing and heat setting process. The addition of PLCL caused significant changes in the mechanical properties of the filaments. Crystallinity of blend decreased with the addition of PLCL as observed by X‐ray diffraction (XRD) and differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) revealed that the fracture surface becomes rougher at higher PLCL content. It may be proposed that PCL and PLCL show limited interaction within the blend matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
The crystallization behavior of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) induced by two kinds of nucleating agents, boron nitride (BN) and talc, was investigated by differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both BN and talc have good nucleating ability in the crystallization of PHB and PHBV. From these results, combined with molecular weight measurement by gel permeation chromatography, the mechanism of nucleation by BN and talc in the crystallization of PHB and PHBV has been proposed. BN acts as a nucleating agent itself and initiates nucleation in the crystallization of PHB and PHBV. Talc acts in a different way. It reacts as a chemical reagent with the molten chains of PHB/PHBV, while the reaction product acts as the true nucleating agent, which lowers the crystallization barriers of PHB and PHBV. 1H NMR spectroscopy provides evidence for the reaction between PHB and talc and supports the proposed nucleation mechanism. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
Various problems, including high crystallinity, high melting temperature, poor thermal stability, hydrophobicity and brittleness, have impeded many practical applications of poly[(3‐hydroxybutyrate)‐co‐(3‐hydroxyvalerate)] (PHBV) as an environmentally friendly material and biomedical material. In the work reported here, multi‐block copolymers containing PHBV and poly(ethylene glycol) (PHBV‐b‐PEG) were synthesized with telechelic hydroxylated PHBV as a hard and hydrophobic segment, PEG as a soft and hydrophilic segment and 1,6‐hexamethylene diisocyanate as a coupling reagent to solve the problems mentioned above. PHBV and PEG blocks in PHBV‐b‐PEG formed separate crystalline phases with lower crystallinity levels and lower melting temperatures than those of phases formed in the precursors. The crystallite dimensions of the two blocks in PHBV‐b‐PEG were smaller than those of the corresponding precursors. Compared to values for the original PHBV, the maximum decomposition temperature of the PHBV block in PHBV‐b‐PEG was 16.0 °C higher and the water contact angle was 9° lower. In addition, the elongation at break was 2.8% for a pure PHBV fiber but 20.9% for a PHBV/PHBV‐b‐PEG fiber with a PHBV‐b‐PEG content of 30%. PHBV‐b‐PEGs can overcome some of the disadvantages of pure PHBV; it is possible that PHBV might be a good candidate for the formulation of environmentally friendly materials and biomedical materials. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
A new monomer, 1,2,3‐tris(ethoxycarbonyl)‐2‐propyl acrylate (TPA), was synthesized by reaction of acryloyl chloride and triethyl citrate. The homopolymer of TPA and its copolymers with acrylic acid (AA), vinyl acetate (VAc) and maleic anhydride (MAH) were prepared by polymerization using lauroyl peroxide (LPO) at 70 °C for 24 h. The structures of TPA and its polymers were identified by FTIR, 1H NMR, 13C NMR spectroscopies, and elemental analysis. The number average molecular weights and polydispersity indices of the synthesized polymers determined by GPC were in the range 4200–23 000 g mol?1 and 1.1–2.1, respectively. The IC50 values of the synthesized samples against cancer cell lines were greater than those of 5‐fluorouracil (5‐FU). The percentage inhibition values of SV40 DNA replication were 82.2 for TPA, 34.3 for poly (TPA), 81.9 for poly(TPA‐co‐AA), 82.0 for poly(TPA‐co‐VAc), 35.6 for poly(TPA‐co‐MAH) and 12.7 for 5‐FU. The inhibitions of SV40 DNA replication and antiangiogenesis for the synthesized TPA and its polymers are much greater than those of the control. © 2001 Society of Chemical Industry  相似文献   

19.
The thermal degradation of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(HB‐HV)] was studied using thermogravimetry (TG). In the thermal degradation of PHB, the temperature at the onset of weight loss (To) was derived by To = 0.97B + 259, where B represents the heating rate (°C/min). The temperature at which the weight loss rate was maximum (Tp) was Tp = 1.07B + 273, and the final temperature (Tf) at which degradation was completed was Tf = 1.10B + 280. The percentage of the weight loss at temperature Tp (Cp) was 69 ± 1% whereas the percentage of the weight loss at temperature Tf (Cf) was 96 ± 1%. In the thermal degradation of P(HB‐HV) (7:3), To = 0.98B + 262, Tp = 1.00B + 278, and Tf = 1.12B + 285. The values of Cp and Cf were 62 ± 7 and 93 ± 1%, respectively. The derivative thermogravimetric (DTG) curves of PHB confirmed only one weight loss step change because the polymer mainly consisted of the HB monomer only. The DTG curves of P(HB‐HV), however, suggested multiple weight loss step changes; this was probably due to the different evaporation rates of the two monomers. The incorporation of 10 and 30 mol % of the HV component into the polyester increased the various thermal temperatures (To, Tp, andTf) by 7–12°C (measured at B = 20°C/min). © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2237–2244, 2001  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号